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Abstract
We show that a collection of lossy multichromatic modulated qubits can be used to dissipatively
engineer arbitrary Gaussian states of a set of bosonic modes. Our ideas are especially suited to
superconducting-circuit architectures, where all the required ingredients are experimentally
available. The generation of such multimode Gaussian states is necessary for many applications,
most notably measurement-based quantum computation. We build upon some of our previous
proposals, where we showed how to generate single-mode and two-mode squeezed states through
cooling and lasing. Special care must be taken when extending these proposals to many bosonic
modes, and we discuss here how to overcome all the limitations and hurdles that naturally appear.
For the sake of illustration, we work out two examples of Gaussian-state families consisting of
Greenberger–Horne–Zeilinger and cluster states, which allow us to show that it is possible to use a
set of N lossy qubits to cool down a bosonic chain of N modes to any desired Gaussian state.

1. Introduction

The generation of complex quantum states of many optical modes has been on the roadmap of quantum
optics for quite some time [1]. Apart from their fundamental motivation on questions of entanglement [2],
such states are necessary for technological applications such as measurement-based quantum computation
[3–5]. Tremendous developments have been possible in this area thanks to nonlinear optical cavities [6–14],
making photonic systems among the most serious contenders for large scale quantum information
processing. Also serious contenders are devices based on superconducting circuits [15–17], where indeed the
most advanced quantum computer prototypes are currently implemented [18–21]. In contrast to photonic
systems, the generation of multimode bosonic states is still at its infancy on these platforms, so it is
interesting to propose ways to generate such states exploiting the unique properties of superconducting
circuits: low characteristic frequencies, on the GHz domain, and large effective dipole moments, conferring
them strong nonlinearities that led to dubbing them ‘giant’ artificial atoms. These properties have allowed
access to regimes that remained largely unexplored with other experimental platforms, for example, the
ultra-strong coupling regime of light–matter interactions [22–25].

Exploiting the low characteristic frequencies of these systems, in this work we put forward a proposal for
the generation of general multimode Gaussian states of microwave fields. Our scheme relies on the ability to
modulate parameters of superconducting circuits at rates comparable to their natural energy scales [26, 27].
In fact, in previous works we have used similar ideas to show that squeezed states of microwave fields can be
generated through cooling [28] or lasing [29], but restricted there to single-mode or two-mode Gaussian
states. In the present work, we examine the possibility of using similar protocols to generate arbitrary
Gaussian states of as many modes as one wants. We provide a positive answer, but not without several
subtleties that impose nontrivial conditions that are necessary to examine in detail. From a more general
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point of view, we study how to modulate a set of lossy qubits to dissipatively engineer arbitrary Gaussian
states of a bosonic chain.

The article is structured as follows. In the next section we introduce the characterization of multimode
Gaussian states, and present the core of our scheme that uses lossy qubits to cool down the bosonic modes to
the desired Gaussian state. In section 3 we develop the protocol formally and discuss some potential
limitations that were not present for single-mode or two-mode states. In sections 4 and 5 we work out
detailed examples: the generation of cluster and Greenberger–Horne–Zeilinger (GHZ) states. With the
examples at hand, section 6 is devoted to proving that the limitations mentioned before do not spoil our
proposal. Throughout the article and for the sake of clarity in the presentation, our scheme is presented via a
model in which all qubits are coupled to all bosonic modes; since this might be highly impractical, in
section 7 we propose alternative models with local couplings only, which allow implementing our ideas as
well. We finish the article in section 8 where we offer some conclusions and comment on how to extend our
methods to generate multimode nonclassical lasing.

2. Multimode Gaussian states and introduction to the generic idea

2.1. Characterization of Gaussian states
Let us first establish what we mean by general Gaussian states [2, 30–33]. Consider for this N bosonic modes
with annihilation operators that we collect into the vector â= (â1, â2, . . ., âN)T, satisfying canonical
commutation relations [âj, â

†
l ] = δjl and [âj, âl] = 0. We introduce a notation in which the transpose symbol

transposes vector arrays but without affecting the operators that make them up, so that â is a column vector
while âT = (â1, â2, . . ., âN) is a row vector. In contrast, the dagger symbol will affect both the vector arrays
and the internal operators, so that â† = (â†1, â

†
2, . . ., â

†
N) is a row vector with creation operators as entries, with

corresponding column vector â†T. These symbols act as usual on any complex matrixM, that is,
(MT)jl =Mlj and (M†)jl =M∗

lj .

Any Gaussian state (up to a trivial displacement) can be generated by applying a Gaussian unitary Ĝ to a
thermal state of all modes [2, 30–33]

ρ̂G(n̄) = Ĝρ̂th(n̄)Ĝ
†. (1)

with ρ̂th(n̄) =⊗N
j=1ρ̂th,j(n̄j), where n̄= (n̄1, . . ., n̄N) collects the number of thermal excitations of the modes,

which in turn fix the entropy or mixedness of the state of the system, and

ρ̂th,j(n̄j) =
e−κj â

†
j âj

tr
{
e−κj â

†
j âj
} , (2)

is a thermal state for a mode with normalized inverse temperature κj, related to the number of excitations by

the Bose–Einstein distribution n̄j = (eκj − 1)−1. The Gaussian unitary does not add any extra entropy to the
state, but changes the correlations (including entanglement) between the modes. Such unitaries are
characterized by effecting a so-called Bogoliubov transformation, which mixes linearly annihilation and
creation operators as

Ĝ†âĜ=Aâ+Bâ†T ≡ Â, (3)

with N ×N complex matricesA and B subject to the constraints

ABT = BAT, AA† = BB† + I, (4)

where I is the N ×N identity, such that the transformed annihilation operators Â satisfy canonical
commutation relations just like the original ones.

Pure states, for which n̄= 0, correspond to the Gaussian unitary acting on the vacuum of the original
modes,

|G〉= Ĝ|vac〉a, where â|vac〉a = 0. (5)

In turn, this state is nothing but the vacuum of the transformed modes, that is, |G〉= |vac〉A, where
Â|vac〉A = 0.

Our protocol for the dissipative generation of Gaussian states is most naturally formulated in terms of the
matricesA and B. However, Gaussian states are most commonly characterized via the covariance matrix,
which identifies its Wigner function in phase space [2, 30–33]. It is then useful to know the relation between
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these two descriptions. Defining the vector of quadratures r̂= (x̂1, . . ., x̂N, p̂1, . . ., p̂N)T, with x̂j = âj + â†j and

p̂j =−i(âj − â†j ), the covariance matrix elements are defined as Vmn = 〈̂rmr̂n + r̂nr̂m〉/2. Using the
commutation relations [̂rm, r̂n] = 2iWmn and the relation r̂= T α̂, with

α̂=

(
â
â†T

)
= (â1, . . ., âN, â

†
1, . . ., â

†
N)

T, (6a)

T =

(
I I

−iI iI

)
, (6b)

W =

(
0 I
−I 0

)
, (6c)

the covariance matrix can be written as

V= T 〈α̂α̂T〉︸ ︷︷ ︸
C

T T − iW. (7)

In turn, the complex covariance matrix C can be easily found in terms ofA and B as

C= tr
{
ρ̂G(n̄)α̂α̂T

}
= tr

{
ρ̂th(n̄)Ĝ

†α̂α̂TĜ
}

=

(
J (A,B,B,A) J (A,A∗,B,B∗)
J (B∗,B,A∗,A) J (B∗,A∗,A∗,B∗)

)
, (8)

where J (X ,Y,Z,R) = X (I + N̄ )YT +ZN̄RT, N̄ = diag(n̄) is a diagonal matrix containing all the
thermal populations in the diagonal, and we have used (3) in the form

Ĝ†α̂Ĝ=

(
Aâ+Bâ†T

A∗â†T +B∗â

)
, (9)

as well as tr
{
ρ̂th(n̄)â

†TâT
}
= N̄ , tr

{
ρ̂th(n̄)ââ

†
}
= I + N̄ , and tr

{
ρ̂th(n̄)ââ

T
}
= 0= tr

{
ρ̂th(n̄)â

†Tâ†
}
.

These expressions are highly simplified in the case of pure states, for which N̄ = 0. In such case, (6)–(8)
lead to

V= 2

(
Re{D+}− I/2 −Im{D−}

Im{D+} Re{D−}− I/2

)
, (10)

whereD± =AA† ±ABT. This expression connects the Hilbert space description of Gaussian states in terms
of Gaussian unitaries acting on thermal states (that is, in terms of n̄,A, and B) with the phase-space
description in terms of the covariance matrix V. An explicit example of how to use this connection is given in
section 5 when considering GHZ states.

In the following, and as we did in this section, indices j, l, and k will run from 1 to N, while indexm will
run up to 2N.

2.2. Basic idea for the dissipative generation of Gaussian states
Our strategy in order to generate the multimode Gaussian states introduced above is similar to the one we
introduced in previous works for single-mode and two-mode squeezed states [28, 29]. As summarized in
figure 1, we couple N modes of linear superconducting circuits with distinct frequencies {ωj}j=1,2,...,N to N
superconducting qubits also with distinct frequencies {εj}j=1,2,...,N, as described by the Hamiltonian (in
section 7 we explain how to avoid all-to-all couplings, and implement the idea with local couplings only)

Ĥ(t) =
N∑

j=1

(
ωjn̂j +

εj
2
σ̂z
j

)
+

N∑

jl=1

gjl(σ̂j + σ̂†
j )(âl + â†l )+

N∑

j=1

[
2N∑

m=1

Ωjmηjm cos(Ωjmt+φjm)

]
σ̂z
j , (11)

with number operators n̂j = â†j âj, and Pauli operators σ̂z
j = |e〉j〈e|− |g〉j〈g| and σ̂j = |g〉j〈e| for qubit j with

ground and excited states |g〉j and |e〉j, respectively. Note that we are using h̄ units for the Hamiltonian, so
that all parameters have frequency units for convenience. We also take all the parameters real and positive for
definiteness. We assume that all direct processes are far off resonant, |εj ±ωl|' gjl, and add a temporal
modulation of the qubit frequencies that will help the system bring certain processes to resonance effectively.
In particular, in general we will need to modulate each qubit with 2N different frequencies Ωjm, with
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Figure 1. (a) Graphic summary of our proposal. N qubits or two-level systems with lowering operators {σ̂j = |g〉j〈e|}j=1,2,...,N
are connected to N bosonic modes with annihilation operators and distinct frequencies {âl,ωl}l=1,2,...,N. The coupling between

qubit j and mode l is gjl(σ̂j + σ̂†
j )(âl + â†l ); all-to-all connections is the cleanest geometry for the theoretical analysis, but we show

in the last section that experimentally-friendlier geometries would work as well, such as a bosonic chain with each mode locally
coupled to a single qubit. Qubit j has a distinct intrinsic transition frequency εj that is in addition modulated by a multichromatic
signal∆εj(t) characterized by a set of 2N modulation frequencies, amplitudes, and phases {Ωjm,ηjm,φjm}m=1,2,...,2N, see
(b). We work in the far off-resonant regime where |εj −ωl| are much larger than the couplings, so that direct processes are highly
suppressed. Then the choice for the modulation frequenciesΩjl andΩj,N+l shown in (b) provide the energies required to

effectively bring into resonance the terms (σ̂†
j âl +H.c.) and (σ̂†

j â
†
l +H.c.) with adjustable complex weights. We show then that a

fast qubit decay γ j cools down the bosonic modes to any desired multimode Gaussian state (by appropriately choosing the
modulation amplitudes ηjm and phases φjm), as long as their decay κ is the slowest rate in the problem.

corresponding (normalized) amplitudes ηjm ( 1 and phases φjm, in order to be able to tune all the possible
couplings between the modes and the qubits. Of course, for specific states the final count might be smaller.

As we rigorously show in the next section, choosing the modulation frequencies (see figure 1)

Ωjl = εj −ωl, Ωj,N+l = εj +ωl, j, l= 1,2, . . .,N (12)

we will be able to control all couplings of the qubits’ ladder operators to the modes’ annihilation and creation
operators, generating the effective Hamiltonian

Ĥeff =−
N∑

j=1

ḡjÂjσ̂
†
j +H.c., (13)

where ḡj are some effective couplings and Âj are the transformed annihilation operators (3) corresponding to
the Gaussian state |G〉 that we want to generate. Let us remark that Ωjl is precisely the energy missing to bring

the term σ̂jâ
†
l (and its Hermitian conjugate) to resonance, see figure 1(b); similarly Ωj,N+l provides the

energy missing for the σ̂jâl process to play a role, see figure 1(b). It is then intuitive that, in the right picture
and under the right conditions, (13) will capture the physics of the dynamics generated by (11). We will
prove this rigorously shortly.

The final step consists on introducing a strong radiative decay on each qubit at rate γj ' |̄gj|. Hence,
every time an excitation is transferred from modes Â to the qubits via (13), the excitation will be quickly lost
before it can come back to the photonic modes, which will then be cooled down the their vacuum state
|vac〉A at rate |̄gj|2/γj [28, 29]. In particular, eliminating adiabatically the qubits using standard techniques
[28, 29, 33], the reduced state ρ̂ of the bosonic modes is easily shown to obey the following master equation:

dρ̂

dt
=

N∑

j=1

(
|̄gj|2

γj
DAj [ρ̂] +κDaj [ρ̂]

)
, (14)

4
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withDC[ρ̂] = 2Ĉρ̂Ĉ† − Ĉ†Ĉρ̂− ρ̂Ĉ†Ĉ. Here we have taken into account the decay of the original modes âj at
rates κ (taken all equal for simplicity). In the limit of large cooperativities |̄gj|2/γjκ' 1 the local decaysDaj

are negligible, so that the dominantDAj terms will steer the state into the vacuum of the Âj modes, that is, the
state |G〉 of equation (5) we were seeking. If the cooperativities are not large enough, the local decays will
introduce some entropy in the final state, so by tailoring them we can even control the type of mixed
Gaussian state ρ̂G(n̄) that we want to generate.

In the following we elaborate on these ideas and consider specific examples.

3. Effective Hamiltonian and limitations

We now rigorously show how to obtain the effective Hamiltonian (13) from the time-dependent
Hamiltonian (11). We first need to move to the interaction picture defined by the transformation operator

Û(t) = exp

(
−i

ˆ t

0
dt ′Ĥ0(t

′)

)
, with Ĥ0 =

N∑

j=1

{
ωjn̂j +

[
εj
2
+

2N∑

m=1

Ωjmηjm cos(Ωjmt+φjm)

]
σ̂z
j

}
, (15)

where states evolve according to the transformed Hamiltonian [33] H̃(t) = Û†(t)Ĥ(t)Û(t)− Ĥ0(t). Next we
apply the Baker–Campbell–Hausdorff formula [33] to write

Û†(t)âjÛ(t) = e−iωjtâj, (16a)

Û†(t)σ̂jÛ(t) = e−i[εj+
∑2N

m=1 2ηjm sin(Ωjmt+φjm)]tσ̂j, (16b)

and use the fact that the sine function is the generator of Bessel functions, so

e2iη sin(Ωt+φ) =
+∞∑

n=−∞
Jn(2η)e

in(Ωt+φ), (17)

where Jn>0(2η) −→
η%

√
n+1

ηn/n! are the Bessel functions, which satisfy J−n(2η) = (−1)nJn(2η). The

transformed Hamiltonian takes then the form

H̃(t) =
N∑

jl=1

gjlσ̂
†
j

[
αjl(t)âl +βjl(t)â

†
l

]
+H.c., (18)

with

αjl(t) =
+∞∑

n1n2...n2N=−∞
Jn1(2ηj1)Jn2(2ηj2). . .Jn2N(2ηj,2N)e

−i(ωl−εj−
∑2N

m=1 nmΩjm)tei
∑2N

m=1 nmφjm , (19a)

βjl(t) =
+∞∑

n1n2...n2N=−∞
Jn1(2ηj1)Jn2(2ηj2). . .Jn2N(2ηj,2N)e

i(ωl+εj+
∑2N

m=1 nmΩjm)tei
∑2N

m=1 nmφjm . (19b)

These time-dependent couplings are a sum of terms oscillating at different frequencies, but we next prove
that a judicious choice of modulation amplitudes ηjm, phases φjm, and frequencies Ωjm will make the
contribution from most terms vanish effectively, except for some static ones that we will use to match the
form (13) of the effective Hamiltonian that we seek. Let us in particular choose the modulation frequencies
Ωjm as we explained in the previous section, equation (12). Then, we define the frequencies of the different
terms in (19) as

ν(α)jl;n = ωl − εj −
2N∑

m=1

nmΩjm = ωl(1+ nl − nN+l)− εj

(
1+

2N∑

m=1

nm

)
+

N∑

l '=k=1

ωk(nk − nN+k), (20a)

ν(β)jl;n = ωl + εj +
2N∑

m=1

nmΩjm = ωl(1− nl + nN+l)+ εj

(
1+

2N∑

m=1

nm

)
−

N∑

l'=k=1

ωk(nk − nN+k), (20b)

where we have introduced a vector n= (n1,n2, . . .,n2N) containing the Bessel indices. Let us also define a
quantity that we will call the η-order, |n|=

∑2N
m=1 |nm|, which for each term Jn1(2ηj1)Jn2(2ηj2). . .Jn2N(2ηj,2N)

provides the order of the polynomial approximation in the small modulation amplitudes ηjm. We will say

5
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that an index combination n is resonant when ν(χ)jl;n = 0, where χ can be either α or β. For each αjl and β jl we
already have a resonant term at η-order |n|= 1, since

ν(α)jl;n1=0,...,nl−1=0,nl=−1,nl+1=0,...n2N=0 = 0, (21a)

ν(β)jl;n1=0,...,nN+l−1=0,nN+l=−1,nN+l+1=0,...n2N=0 = 0. (21b)

Ideally, we would like any other resonances to appear only at large η-order |n|, so that their corresponding
contribution to the coupling is highly suppressed as η|n|. Lower η-order frequencies, on the other hand,

should satisfy |ν(χ)jl;n |' |gjlJn1(2ηj1)Jn2(2ηj2). . .Jn2N(2ηj,2N)|, so that their contribution can be neglected by
virtue of the rotating-wave approximation. While it is not difficult to check that there are no resonances at
η-order |n|= 2 (for example, by doing an exhaustive check of all available combinations of Bessel indices
with any symbolic math software), we already find unavoidable resonances at η-order |n|= 3, which we
discuss in detail at the end of this section. For the sake of argumentation, let us however proceed for now
assuming that all contributions are negligible in (21) except the |n|= 1 ones, and how this allows us to
obtain the effective Hamiltonian (13). Under such assumption, the effective couplings can be rewritten as

αjl ≈ J0(2ηj1). . .J0(2ηj,l−1)J−1(2ηjl)J0(2ηj,l+1). . .J0(2ηj,2N)e
−iφjl ≈−ηjle−iφjl , (22a)

βjl ≈ J0(2ηj1). . .J0(2ηj,N+l−1)J−1(2ηj,N+l)J0(2ηj,N+l+1). . .J0(2ηj,2N)e
−iφj,N+l ≈−ηj,N+le

−iφj,N+l , (22b)

where we have assumed that the modulation amplitudes ηjl are small enough such that the lowest-order
approximation of the Bessel functions hold, in particular J0(2η)≈ 1 and J−1(2η)≈−η. The
interaction-picture Hamiltonian (18) turns then into an effective Hamiltonian

H̃eff =−
N∑

j=1

[
N∑

l=1

gjl
(
ηjle

−iφjl âl + ηj,N+le
−iφj,N+l â†l

)]
σ̂†
j +H.c., (23)

which has exactly the form in (13), making the correspondence

ḡjÂj =
N∑

l=1

gjl
(
ηjle

−iφjl âl + ηj,N+le
−iφj,N+l â†l

)
(24a)

⇓
ḡjAjl = gjlηjle

−iφjl , ḡjBjl = gjlηj,N+le
−iφj,N+l , j, l= 1,2, . . .,N. (24b)

Now, since the modulation amplitudes ηjm and phases φjm can be freely chosen (just with the requirement
that the amplitudes must be small), this expression seems to suggest that we indeed can access any
multimode Gaussian state we want, just with the subtlety that the effective couplings |̄gj| could become too
small, leading to slow cooling rates |̄gj|2/γj. Equation (24b) fixes the modulation phases as

φjl =−arg{Ajl}, φj,N+l =−arg{Bjl}, (25)

and considering for simplicity the case of homogeneous coupling, gjl = g∀jl, the modulation amplitudes
need to satisfy

ηjl =
ḡj
g
|Ajl|, ηj,N+l =

ḡj
g
|Bjl|. (26)

Since the effective couplings are still to be determined, this expressions do not fix all modulation amplitudes,
in particular allowing us to fixN of them (one for each value of j) at will. Let us denote by l̄j the value of l that
we pick as reference for each j, so that {ηj̄lj}j=1,2,...,N are the amplitudes that we fix to whatever value we
want. Assuming then thatAj̄lj -= 0 (otherwise, we just use a different reference l value), this fixes the rest of
amplitudes as

ηjl =
|Ajl|
|Aj̄lj |

ηj̄lj , ηj,N+l =
|Bjl|
|Aj̄lj |

ηj̄lj . (27)

6
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The ratios |Ajl/Aj̄lj | and |Bjl/Aj̄lj | can be larger than one, so one needs to be careful to choose the reference
amplitudes ηj̄lj so as to keep the rest of the amplitudes ηjm small. Inserting these expressions back in (26), we
obtain the effective couplings

ḡj =
ηj̄lj
|Aj̄lj |

g. (28)

Before moving on to examples, we need to comment about the limitations imposed by the resonance at

η-order |n|= 3. In particular, for a given frequency ν(χ)jl;n it is always possible to find N − 1 resonances with
|n|= 3 that make it vanish exactly: we can make each of the three terms adding up in the final forms of (20a)

and (20b) vanish independently by choosing (nl,nN+l) = (0,1) for ν(α)jl;n and (nl,nN+l) = (1,0) for ν(β)jl;n , and
then nk = nN+k =−1 for any other k -= l. Hence, a more precise expression for the couplings αjl and β jl up to
third order in the modulation amplitudes ηjl would be

αjl ≈−ηjle−iφjl

[
1−

2N∑

m=1

(
1− δml

2

)
η2jm

]
+

N∑

l '=k=1

ηj,N+lηjkηj,N+ke
i(φj,N+l−φjk−φj,N+k), (29a)

βjl ≈−ηj,N+le
−iφj,N+l

[
1−

2N∑

m=1

(
1− δm,N+l

2

)
η2jm

]
+

N∑

l'=k=1

ηj,lηjkηj,N+ke
i(φj,l−φjk−φj,N+k). (29b)

Note that we have also included the third order correction in ηjl that comes from (22) when expanding
the Bessel functions as J0(2η) = 1− η2 and J−1(2η)≈−η+ η3/2. Assuming that all the amplitudes are of
the same order η, we then see that by neglecting these contributions, we are making a relative mistake of
order Nη2 in the worst case. Depending on the accuracy with which we want to generate the Gaussian state,
this might need to be considered carefully. Of course, one can always include this contribution when doing
the matching (24b) and choose the amplitudes and phases accordingly, but then the construction becomes
more cumbersome. We will come back to this issue in section 6 with examples that will allow us to show that
even for large N and large entanglement levels these third-order corrections do not impose serious
constraints to our proposal.

4. Example 1: continuous-variable cluster states

4.1. Cluster states
As a specific example, we consider in this section the generation of the class of so-called continuous-variable
cluster states [4, 34, 35]. These are the states explicitly used in measurement-based quantum computation
[4]. They rely on the application of the continuous-variable analog of the controlled-Z gate, which for two
modes with indices j and l is defined as exp

(
iqx̂jx̂l/4

)
, where we call q ∈ R the control-Z parameter. In loose

terms, the gate applies a momentum translation on mode j that depends on the position of mode l (and vice
versa). Cluster states of N modes are then defined through the application of controlled-Z gates to a
zero-momentum eigenstate of all modes [4, 34, 35]. In particular, consider an N ×N real symmetric matrix
Q whose elements are the control-Z parameters for each pair of modes, which defines the controlled-Z gate
for the bosonic modes

ĈZ(Q) = e
i
4 x̂

TQx̂ = e
i
4

∑N
jl=1Qjl x̂j x̂l . (30)

We gather the positions and momenta in the vectors x̂= (x̂1, . . ., x̂N)T and p̂= (p̂1, . . ., p̂N)T. Applying this
Gaussian unitary (30) to momentum eigenstates leads to an unnormalizable state. In order to define physical
cluster states, one then considers momentum-squeezed states instead, obtained by applying the squeezing
operators Ŝj(r) = exp[r(â†2j − â2j )/2] to the vacuum state. The resulting states converge to ideal cluster states
in the r→∞ limit and have the form

|ψ(Q, r)〉= ĈZ(Q)ŜN(r). . .Ŝ2(r)Ŝ1(r)︸ ︷︷ ︸
Ĝ

|vac〉a. (31)

These states are already written as the action of a Gaussian unitary Ĝ on the vacuum of the original modes as
in (5). Noting that
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Ĉ†
Z(Q)x̂ĈZ(Q) = x̂, (32a)

Ĉ†
Z(Q)p̂ĈZ(Q) = p̂+Qx̂, (32b)

Ŝ†j (r)âjŜj(r) = âj cosh r+ â†j sinh r, (32c)

Ŝ†j (r)x̂jŜj(r) = erx̂j, (32d)

Ŝ†j (r)p̂jŜj(r) = e−rp̂j, (32e)

as easily found by applying the Baker–Campbell–Hausdorff formula [33], it is then easy to see that the
variances of the quadratures X̂= x̂ and P̂= p̂−Qx̂ (which form a conjugate set, since they obey canonical
commutation relations) satisfy

var(X̂j) = e2r and var(P̂j) = e−2r, ∀j, (33)

where var(B̂) = 〈B̂2〉− 〈B̂〉2. Hence, in a cluster state, one finds correlations between the momenta p̂j and the
combinations (Qx̂)j of position operators. These correlations are beyond what’s achievable for a coherent
state (corresponding to r= 0) or mixtures of coherent states (lower bounded by unit quadrature variances),
all these known as classical states, since they lead to a positive and normalizable Glauber–Sudarshan
distribution [36]; in other words, states satisfying (33) are non-classical according to this notion of
non-classicality.

4.2. Generating cluster states with our scheme
Let us now particularize to these cluster states the choice of modulation amplitudes ηjm and phases φjm that
we did in (27) for general Gaussian states, and discuss what we get. First we need to find the matricesA and
B defined for a general Gaussian unitary in (3), but particularized to the one associated with the cluster
states (31). Using (32) and the relation â= (x̂+ ip̂)/2 between quadratures and annihilation and creation
operators, we get

Ĝ†âĜ=
1

2
Ĉ†
Z(Q)

(
erx̂+ ie−rp̂

)
ĈZ(Q) =

1

2
(erI + ie−rQ)x̂+

i

2
e−rp̂. (34)

In turn, using x̂= â+ â†T and ip̂= â− â†T, we then obtain

Ĝ†âĜ=

(
I cosh r+ i

2
e−rQ

)
â+

(
I sinh r+ i

2
e−rQ

)
â†T, (35)

leading to

A= I cosh r+ ie−rQ/2, (36a)

B = I sinh r+ ie−rQ/2. (36b)

Using now relations (25) and (27), and choosing in this case l̄j = j, that is, we take ηjj as the reference
amplitudes (sinceAjj is different than zero for all cluster states), we then obtain

ηjl = ηjj

√√√√4δjl cosh
2 r+ e−2rQ2

jl

4cosh2 r+ e−2rQ2
jj

, (37a)

ηj,N+l = ηjj

√√√√4δjl sinh
2 r+ e−2rQ2

jl

4cosh2 r+ e−2rQ2
jj

, (37b)

φjl =

{
−arg{2cosh r+ ie−rQjj}, l= j

−sign{Qjl}×π/2 l -= j
, (37c)

φj,N+l =

{
−arg{2sinh r+ ie−rQjj}, l= j

−sign{Qjl}×π/2 l -= j
. (37d)

8
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In order to keep the amplitudes small, it is enough to take small reference amplitudes ηjj, since assuming
e2r > |Qjl|, these are actually larger than the rest by a factor e2r tops. On the other hand, the effective
couplings (28) read in this case

ḡj =
ηjj√

cosh2 r+ e−2rQ2
jj/4

g. (38)

The effective couplings decrease then exponentially with the squeezing parameter r.

5. Example 2: continuous-variable GHZ states

5.1. GHZ states
As a second example we next consider the generation of continuous-variable GHZ states of different number
of modes N [2, 37, 38]. In the unphysical limit of perfect entanglement, these states converge to the pure
unnormalizable one

´
R dx

⊗N
j=1 |x〉, where |x〉 are the eigenstates of the position quadratures x̂j. The most

characteristic feature of this state is that it shows perfect correlation between all positions, as well as a
well-defined center-of-mass momentum, since it is an eigenstate of the operators {x̂j − x̂l}jl=1,...,N and∑N

j=1 p̂j with zero eigenvalue. It is common to summarize these correlations through the variances

var

(
x̂1 − x̂2√

2

)
= var

(
x̂2 − x̂3√

2

)
= . . .= var

(
x̂N−1 − x̂N√

2

)
= var

(
p̂1 + p̂2 + . . .+ p̂N√

N

)
= 0. (39)

Remarkably, tracing out any of the modes turns the state of the remaining modes into the completely
separable one

´
R dx

⊗N−1
j=1 |x〉〈x|, showing that this is a state with genuine multipartite entanglement. Note

that for N = 2, this is just the well known EPR or two-mode perfectly-squeezed vacuum state [2, 30–33].
While this state is unphysical, one can easily build physical ones having the same qualitative properties [2,

37, 38]. For this, we just relax the perfect-correlation condition (39) as

var

(
p̂1 + p̂2 + . . .+ p̂N√

N

)
= e−2r1 , (40a)

var

(
x̂1 − x̂2√

2

)
= var

(
x̂2 − x̂3√

2

)
= . . .= var

(
x̂N−1 − x̂N√

2

)
= e−2r2 , (40b)

for some finite real and positive parameters r1 and r2. Now the correlations are not perfect, but are still well
beyond those of coherent-state mixtures (for which the previous variances are lower bounded by 1), so the
states are nonclassical. States satisfying (40) can be built in a very neat way by starting with N single-mode
squeezed states (N − 1 in position and 1 in momentum) and mixing them in a succession of beam-splitters
for neighboring modes [2, 37, 38]. In particular, consider the following state

|ψ(r1, r2)〉= B̂N−1,N(θN−1). . .B̂23(θ2)B̂12(θ1)ŜN(−r2). . .Ŝ2(−r2)Ŝ1(r1)︸ ︷︷ ︸
Ĝ

|vac〉a, (41)

with

B̂jl(θ) = eθ(âj â
†
l −â†j âl)eiπâ

†
l âl =⇒

{
B̂†
jl(θ)âjB̂jl(θ) = âj cosθ+ âl sinθ

B̂†
jl(θ)âlB̂jl(θ) =−âl cosθ+ âj sinθ

, (42)

and beam-splitter angles given by

cosθn =
1√

N− n+ 1
, sinθn =

√
N− n

N− n+ 1
. (43)

The GHZ state (41) is already written as the action of a Gaussian unitary Ĝ on the vacuum of the original
modes as in (5). Moreover, we know from (32) and (42) how each of the unitaries act as a linear operation on
the annihilation and creation operators:

Ŝ†j (r)α̂Ŝj(r) = Sj(r)α̂, B̂†
jl(θ)α̂B̂jl(θ) = Bjl(θ)α̂. (44)

Here Sj(r) is a matrix equal to the 2N× 2N identity, except for entries cosh r at elements (j, j) and
(N+ j,N+ j), and entries sinh r at elements ( j,N+ j) and (N+ j, j). On the other hand, Bjl(θ) is also a

9



New J. Phys. 25 (2023) 083052 N Yazdi et al

matrix equal to the 2N× 2N identity, except for entries cosθ at elements (j, j) and (N+ j,N+ j), entries
−cosθ at elements (l, l) and (N+ l,N+ l), and entries sinθ at elements (j, l), (l, j), (N+ j,N+ l), and
(N+ l,N+ j). Hence, combining the action of all unitaries we find Ĝ†α̂Ĝ= Gα̂, with a matrix

G = BN−1,N(θN−1). . .B23(θ2)B12(θ1)SN(−r2). . .S2(−r2)S1(r1)≡
(

A B
B∗ A∗

)
, (45)

whose upper-left and upper-right blocks correspond to the matricesA and B that define the Â operators
in (3).

In order to check that this construction leads to the desired GHZ state with correlations (40), we can
evaluate the covariance matrix of the state (41) using (10). One can easily check (better with the help of some
symbolic program to handle the matrix multiplications and diagonalization) that the covariance matrix has
eigenvalues e±2r1 and e±2r2 , the latter with N − 1 degeneracy. The corresponding eigenvectors are
(0,0, . . .,0,1,1, . . .,1)T for e−2r1 and {(1,−1,0, . . .,0)T,(0,1,−1,0, . . .,0)T, . . .,(0, . . .,1,−1,0, . . .,0)} for
e−2r2 , which correspond precisely to the desired quadratures when multiplied by r̂.

5.2. Generation of GHZ states with our scheme
Let us now find the modulation amplitudes ηjm and phases φjm, equations (27) and (25), that lead to GHZ
states in our scheme. We choose in this case l̄j = 1 ∀j, that is, we take the modulation amplitudes
{ηj1}j=1,2,...,N as the ones we control (this choice simply leads to more manageable expressions, but any
other choice would lead to the same conclusions). Using the matricesA and B built as explained above for
the GHZ state, it is not difficult to find by inspecting different N vales the following forms for the amplitudes
and phases for arbitrary number of modes

ηjl = ηj1 ×






1, l= 1
0, l> j+ 1√

N(N−j)
N−j+1

cosh r2
cosh r1

, l= j+ 1
√

N
(N−l+2)(N−l+1)

cosh r2
cosh r1

, 1< l< j+ 1

, (46a)

ηj,N+l = ηjl ×
{

tanh r1 l= 1
tanh r2 l> 1

, (46b)

φjl =

{
π, l= 1or l> j
0 otherwise

, (46c)

φj,N+l =

{
π, l= j+ 1
0 otherwise

, (46d)

where in these expressions j, l= 1,2, . . .,N. There are several notable things to mention here. First, assuming
that we take all ηj1 of the same order, say ηj1 = η∀j, note that the largest amplitude is η12 =

√
N− 1η (further

assuming r1 = r2 for simplicity), which we need to make sure stays much smaller than 1, e.g. we need to
choose η = 0.1/

√
N− 1. On the other hand, particularized to the GHZ state, (28) leads to the effective

couplings

ḡj =

√
Nηj1

cosh r1
g. (47)

Remarkably, the effective couplings do not depend on r2, but decrease exponentially with r1. Also, they are
dressed by a factor

√
N, so they do not ‘feel’ the 1/

√
N− 1 reduction of η mentioned above. In other words,

the cooling rates are approximately independent of N, similarly to what we found for cluster states.

6. Limits imposed by the |n| = 3 resonances

With the examples at hand, we can now give more quantitative details about the error that one would make
when not considering higher η-order resonances, in particular those occurring at |n|= 3. In order to do this,
we can simply compute the fidelity or overlap between the states with and without the correction given
in (29).

Let us denote by Ã and B̃ the matrices of the Gaussian state including the correction. The
interaction-picture Hamiltonian (18) still has the form of the effective Hamiltonian (13),∑N

j=1 g̃jσ̂j[
∑N

l=1(Ãjlâl + B̃jlâ
†
l )] +H.c., but now with the correspondences g̃jÃjl =−gαjl and g̃jB̃jl =−gβjl,

10
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with αjl and β jl expressed to third order in the modulation amplitudes ηjm as given by (29). The qubits will
now cool the modes to the ground state of a Gaussian state with modified matrices and effective couplings, as
given by

g̃j = g

√√√√
N∑

k=1

(|αjk|2 − |βjk|2), Ãjl =−
αjl√∑N

k=1(|αjk|2 − |βjk|2)
, B̃jl =−

βjl√∑N
k=1(|αjk|2 − |βjk|2)

, (48)

where the modulation amplitudes ηjm and phases φjm are chosen as (46) for the cluster state example or (46)
for the GHZ example. Given these expressions and using (7), we can then build the covariance matrix of the
modified Gaussian state as

Ṽ= T
(

ÃB̃T ÃÃ†

B̃∗B̃T B̃∗Ã†

)
T T − iW. (49)

Now all that is left is comparing the ideal Gaussian state |ψ〉 with covariance matrix (10) and this modified
one, that we denote by |ψ̃〉. We denote the corresponding Wigner functions byW(r) and W̃(r), which are
Gaussians of zero mean in both cases. Now, since they are pure states, we compare them through the overlap,
which is easily evaluated as [2, 30–33]

|〈ψ|ψ̃〉|2 = (4π)N
ˆ
R2N

d2NrW(r)W̃(r) (50)

=
(4π)N

(2π)2N
√
det{V}det{Ṽ}

ˆ
R2N

d2Nre−
1
2 r

T(V−1+Ṽ−1)r =
2N√

det{V−1 + Ṽ−1}
,

where we have used det{V}= 1= det{Ṽ} since the states are pure.
In the case of cluster states, we have examined the fidelity for up to N = 50 modes and many random

instances of the matrixQ with elements in the interval [−4, 4] different geometries for the connections
between pairs of modes. Taking the reference amplitudes ηjj = 0.1, we have never found an instance with
overlap smaller than 0.95, even for 99% squeezing (e−2r1 = e−2r2 = 0.1).

As for GHZ states, they show a bit more sensitivity to these corrections. Setting the reference amplitudes
to η1j = 0.1/

√
N− 1, for 90% squeezing (e−2r1 = e−2r2 = 0.1) we have checked that the fidelity remains

above 0.998 for as large N as we have been patient enough to compute (N = 10). For N = 10, we have seen
that the fidelity falls below 0.99, 0.95, and 0.9 only if the squeezing exceeds, respectively, 95.1%, 97.7%, and
98.3% (e−2r1 = e−2r2 = 0.049, 0.023, and 0.017).

For both types of states we have checked that the effective couplings g̃j remain extremely close to the
original ones ḡj (say, within 5 significant digits) for the largest squeezing and number of modes that we have
computed.

7. Avoiding all-to-all coupling

Perhaps the main experimental hurdle of our proposal is the fact that the model we present has connections
of all modes to all qubits, which is pretty unrealistic through direct coupling in current architectures.
Fortunately, effective ways such as those relying on resonator networks can help [39]. As a proof of concept,
we consider here a simpler situation: we next show that a chain of nearest-neighbor-coupled modes, with
each mode locally coupled to a single qubit, achieves the type of Hamiltonian we need in the normal-mode
basis of the chain. We compare two types of chains that allow us for analytic calculations: one with open
boundaries and one with closed boundaries.

7.1. Open bosonic chain
Consider first the model

Ĥ=
N−1∑

j=1

(
ωâ†j âj − Jâjâ

†
j+1 − Jâ†j âj+1 +

εj
2
σ̂z
j

)
+

N∑

j=1

gj(σ̂j + σ̂†
j )(âj + â†j ). (51)

We have taken all the mode frequencies and hoppings equal (homogeneous chain) in order to be able to
perform analytic calculations. We can move to a normal-mode basis that diagonalizes the bosonic part of this
model, which we write as â†Mâ, with a tridiagonal matrix

11
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M=





ω −J
−J ω −J

−J ω −J
. . .

. . .
. . .

−J ω −J
−J ω





. (52)

This can be diagonalized [40] asM= SDS , whereD = diag(∆1,∆2, . . .,∆N) is a diagonal matrix
containing the eigenvalues∆k = ω− 2Jcos( kπ

N+1 ) and S is a symmetric orthogonal matrix (ST = S and

STS = I) with elements Sjk =
√

2
N+1 sin(

jkπ
N+1 ). In terms of the transformed bosonic operators ĉ= Sâ, the

bosonic part of the Hamiltonian takes then the form ĉ†Dĉ, so the total Hamiltonian is rewritten as

Ĥ=
N∑

k=1

∆kĉ
†
k ĉk +

N∑

j=1

εj
2
σ̂z
j +

N∑

jk=1

gjk(σ̂j + σ̂†
j )(̂ck + ĉ†k), (53)

where we have defined the couplings gjk =
√

2
N+1gj sin(

jkπ
N+1 ). Note that the couplings are now reduced by a

√
N+ 1 factor, but we will take these renormalized couplings as the ones whose magnitude we fix. In

addition, the couplings are modulated by a sinusoidal function sin( jkπ
N+1 ), which can vanish when jk= N+ 1;

one then needs to be careful to pick a prime N + 1 in this open chain configuration.
All nuances apart, we then see that in this normal-mode basis we obtain the model we were seeking, with

all modes coupled to all qubits. A potential drawback is that, as N increases, the difference between∆k and
∆k±1 decreases; we can estimate the worst case situation by considering the mode k at the top of the
dispersion relation (k= 1) and its neighbor (k= 2), whose difference is given by 2J[cos( 2π

N+1 )−
cos( π

N+1 )]≈ 3π2J/N2 for large N, showing that if we want to keep this difference on the order of the largest
coupling max(|gjk|)≡ g, the hopping will have to scale as the square of the number of modes, that is,
J! gN2/3π2. But also, it is important that the mode frequencies, which span over an interval 4J around ω,
do not get close to the qubit frequencies. For example, assuming that the qubit frequencies are larger than the
mode frequencies, we demand that the largest mode frequency is much smaller than the smallest qubit
frequency. Let’s estimate what this means for typical superconducting circuit parameters, whose frequencies
are one the gigahertz range and can span over 10 GHz or more. Take then largest qubit frequency
ε1 = 2π× 10 GHz, and the rest of qubit frequencies spaced by g, so that the smallest one is
εN = 2π× 10 GHz− (N− 1)g, and assume that the smallest mode frequency ωmin ≈ ω− 2J is equal to
2π×1 GHz, so that the largest must obey ωmax " 2π× 1GHz+ 4J∼ 2π× 1 GHz+ 4gN2/3π2. Taking
(similarly to our previous works [28, 29] and consistently with experimental values [15–17]) g= 2π× 40
MHz, we then get that εN −ωmax > 35g as long as N" 35, which is a large number of modes. This proves
that the idea of working with a chain is feasible.

One more thing to consider is to which state we need to cool down the normal modes ĉ in order to obtain
a desired Gaussian state of the original modes â. For this, just keep in mind that the relation between these
modes can be written as â= S ĉ. Then, applying S on (3), we obtain the action of the Gaussian unitary Ĝ
that defines the target state |G〉= Ĝ|vac〉a on the normal modes (keep in mind that |vac〉a is also the vacuum
state of the normal modes, ĉ|vac〉a = 0, since the transformation S is passive [30]), which define the new set
of bosonic operators Ĉ that we will need to cool down:

Ĝ†ĉĜ= SAS︸ ︷︷ ︸
A(c)

ĉ+SBS︸︷︷︸
B(c)

ĉ†T ≡ Ĉ. (54)

The qubit modulation

N∑

j=1

[
N∑

k=1

Ωjkηjk cos(Ωjkt+φjk)

]
σ̂z
j (55)

would now induce the effective Hamiltonian

Ĥeff =−
N∑

j=1

ḡjĈjσ̂
†
j +H.c., (56)

as long as the modulation amplitudes and phases are chosen to satisfy

ḡjA(c)
jk = gjkηjke

−iφjk , ḡjB(c)
jk = gjkηj,N+ke

−iφj,N+k , (57)
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where the only difference with the all-to-all connected model is that the target matrices are S-transformed,
A(c) and B(c), and the modulation phases need to cancel additional phases (signs) coming from some of the
sin( kjπ

N+1 ) terms in the couplings gjk. Specifically, assuming couplings gjk = g sin( kjπ
N+1 ) of equal magnitude

except for the sinusoidal modulation, we can make the same choices as we did in equations (25) and (27):

ηjk =

∣∣∣∣∣∣

A(c)
jk sin

(
k̄j jπ
N+1

)

A(c)

j̄lj
sin
(

kjπ
N+1

)

∣∣∣∣∣∣
ηj̄kj , (58a)

ηj,N+k =

∣∣∣∣∣∣

B(c)
jk sin

(
k̄j jπ
N+1

)

A(c)

j̄lj
sin
(

kjπ
N+1

)

∣∣∣∣∣∣
ηj̄kj , (58b)

φjk = arg

{
sin

(
kjπ

N+ 1

)}
− arg{A(c)

jk }, (58c)

φj,N+k = arg

{
sin

(
kjπ

N+ 1

)}
− arg{B(c)

jk }, (58d)

where the reference amplitudes {ηj̄kj}j=1,2,...,N are fixed to whatever value we want, and the effective
couplings read

ḡj = gηj̄kj

∣∣∣∣∣∣

sin
(

k̄j jπ
N+1

)

A(c)

j̄kj

∣∣∣∣∣∣
. (59)

7.2. Closed bosonic chain
Consider next the model

Ĥ=
N∑

j=1

(
ωâ†j âj − Jeiφâjâ

†
j+1 − Je−iφâ†j âj+1 +

εj
2
σ̂z
j

)
+

N∑

j=1

gj(σ̂j + σ̂†
j )(âj + â†j ). (60)

where again we take all the mode frequencies and hoppings equal (homogeneous chain) in order to be able to
perform analytic calculations. We will see in a second that this forces us to introduce complex hoppings
φ -= 0 (sometimes referred to as ‘external artificial Gauge field’) for our ideas to work, but real hoppings
would work as well as long as the chain is sufficiently inhomogeneous. Periodic boundaries are assumed this
time, that is, âN+1 ≡ â1. Let’s move to the Fourier basis that diagonalizes the bosonic part of this model

âj =
1√
N

kmin+N−1∑

k=kmin

e2πijk/Nĉk ⇐⇒ ĉk =
1√
N

N∑

j=1

e−2πijk/Nâj, (61)

where we choose to work in the first Brillouin zone so that kmin =−N/2 or−(N− 1)/2 for even or odd N,
respectively. Inserting this expression in (60) and using the completeness relation

∑N
j=1 e

2πij(k−k′)/N = Nδk,k′ ,
we easily obtain

Ĥ=
kmin+N−1∑

k=kmin

∆kĉ
†
k ĉk +

N∑

j=1

εj
2
σ̂z
j +

N∑

j=1

kmin+N−1∑

k=kmin

(σ̂j + σ̂†
j )(gjkĉk + g∗jkĉ

†
k), (62)

where we have defined the dispersion relation∆k = ω− 2Jcos(2π k/N−φ) and the complex couplings
gjk = e2πijk/Ngj/

√
N. The couplings are now reduced by a

√
N factor, but do not possess the sinusoidal

modulation present in the open chain, so in this case there is no restriction on the values of N. Importantly,
the condition that all mode frequencies must be different,∆k -=∆k′ '=k, imposes that φ cannot take certain
values such as 0 or π, for which∆k =∆−k. Hence, having complex hopping in the homogeneous chain is a
necessary condition. Of course, it might be experimentally easier to work with an inhomogeneous chain (e.g.
bosonic modes of unequal frequencies) and keep the hoppings real. Also, note that as N increases, the
difference between∆k and∆k±1 decreases; we can estimate the worst case situation in the same way as we
did above for the open chain, by considering in this case a mode k at the bottom of the dispersion relation
and a neighboring one, whose difference is given by 2J[1− cos(2π/N)]≈ 8π2J/N2 for large N, showing that
if we want to keep this difference on the order of the largest coupling max(|gj|/

√
N)≡ g, the hopping will

have to scale again as the square of the number of modes, that is, J! gN2/8π2. Taking g= 2π× 40 MHz, we
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apply again the condition that the smallest qubit frequency εN = 2π× 10 GHz− (N− 1)gmust be larger
than the largest Fourier-mode frequency ωmax " 2π× 1 GHz+ 4J∼ 2π× 1 GHz+ gN2/2π2, obtaining
εN −ωmax > 50g as long as N < 50, which is again a large number of modes.

We finally need to consider again the state to which we need to cool down the Fourier modes in order to
obtain a desired Gaussian state of the original modes. The relation between these modes can be written now
as â= F ĉ, with F a unitary matrix with elements Fjk = e2πijk/N/

√
N and ĉ= (̂ckmin , ĉkmin+1 , . . ., ĉkmin+N−1)T

collecting all the Fourier annihilation operators. Then, applying F† on (3), we obtain the action of the
Gaussian unitary Ĝ that defines the target state |G〉= Ĝ|vac〉a on the Fourier modes, which defines the new
set of bosonic operators Ĉ that we will need to cool down:

Ĝ†ĉĜ= F†AF︸ ︷︷ ︸
A(c)

ĉ+F†BF∗
︸ ︷︷ ︸

B(c)

ĉ†T ≡ Ĉ. (63)

The qubit modulation

N∑

j=1




kmin+2N−1∑

k=kmin

Ωjkηjk cos(Ωjkt+φjk)



 σ̂z
j (64)

would now induce the effective Hamiltonian

Ĥeff =−
N∑

j=1

ḡjĈjσ̂
†
j +H.c., (65)

as long as the modulation amplitudes and phases are chosen to satisfy

ḡjA(c)
jk = gjkηjke

−iφjk , ḡjB(c)
jk = g∗jkηj,N+ke

−iφj,N+k . (66)

Assuming couplings gjk = gexp(2πijk/N) of equal magnitude, we can make the same choices as we did in
previous sections, equations (27) and (25):

ηjk =
|A(c)

jk |

|A(c)

j̄kj
|
ηj̄kj , ηj,N+k =

|B(c)
jk |

|A(c)

j̄kj
|
ηj̄kj , (67a)

φjk = 2π
jk

N
− arg{A(c)

jk } , φj,N+k =−2π
jk

N
− arg{B(c)

jk }, (67b)

where {ηj̄kj}j=1,2,...,N are fixed to whatever value we want as usual, and the effective couplings read

ḡj = g
ηj̄kj

|A(c)

j̄kj
|
. (68)

8. Concluding remarks

We have shown how to modulate a collection of lossy qubits coupled to a set of bosonic modes so as to
dissipatively steer the latter into any desired multimode Gaussian state. While we have initially presented the
idea for an all-to-all coupling geometry (cleaner for the theoretical analysis), we have also proven that it can
be avoided by, for example, using a bosonic chain with local couplings to the qubits, which looks
experimentally friendlier. We have explicitly shown how to modulate the qubits so as to generate two
paradigmatic families of states: cluster and GHZ states. These examples have proven that the modulation
amplitudes ηjm and effective couplings ḡj have similar parametric dependences on the relevant physical
parameters as their counterparts in our previous single-mode work [29]. The only potential issue we need to
be careful with is choosing the qubit and mode frequencies such that there are no higher η-order resonances,
to which the multimode protocol is more prone to. Essentially, this just requires that all frequency differences
are large enough with respect to the couplings g. Taking g/2π = 40 MHz as in the previous sections, with
ε1/2π = 10 GHz, ω1/2π = 4.8 GHz, and the rest of frequencies equally spaced as
{εj+1 = ε1 − 10gj,ωj+1 = ω1 − 10gj}j=1,2,...,N−1, we can reach N = 10 while still keeping the lowest
frequency above 1 GHz, which is reasonable for superconducting circuits. Of course, way larger N can be
obtained by decreasing the spacing between modes, and we have indeed checked that even taking
|ωj −ωj+1|= g we can still satisfy the conditions required for αjl and β jl to not receive relevant higher
η-order contributions while reaching N > 100.
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Regarding the dissipative preparation of the Gaussian state through cooling, let us refer to the effective
master equation (14) of the bosonic modes after adiabatic elimination of the qubits. The effective removal of
bosonic excitations requires very lossy qubits, say with spontaneous emission rate γj/2π = 400 MHz ten
times larger than the coupling g. On the other hand, bosonic excitations should not decay through their own
natural environment, and thus high-quality bosonic modes are required. Let us take κ/2π = 1 KHz,
accessible in superconducting devices where extremely high quality factors have been realized. These
parameters allow reaching large cooperativities on the order of ḡ2j /γjκ∼ g2η2/γjκcosh

2 r≈ 13 for

modulation amplitudes η≈ 0.1 and 90%-squeezing levels (e−2r ≈ 0.1), where we have used the effective
couplings ḡj ∼ gη/cosh r derived from the examples. For this value of the cooperativity one expects just a
small mixed correction to the ideal Gaussian pure state, similarly to what we found in [29].

Let us remark that once we know how to generate arbitrary Gaussian states through cooling, we can also
do it via lasing, just adapting the ideas we presented in [29]. In particular, one would need to add an auxiliary
set of qubits, but modulated in such a way that the anti-Jaynes–Cummings equivalent of (13) is generated,
that is, an effective Hamiltonian of the form−

∑N
j=1 ḡj(Âjσ̂j + Â†

j σ̂
†
j ). In order to accomplish this, one just

needs to replace the correspondence (24b) by

ḡjÂ
†
j =

N∑

l=1

gjl
(
ηjle

−iφjl âl + ηj,N+le
−iφj,N+l â†l

)
(69a)

⇓
ḡjB∗

jl = gjlηjle
−iφjl , ḡjA∗

jl = gjlηj,N+le
−iφj,N+l , j, l= 1,2, . . .,N. (69b)

After tracing out the qubits used for cooling, one is then left with the following master equation for the state
ρ̂ of the bosonic modes and the auxiliary qubits [29]:

dρ̂

dt
=

N∑

j=1

(
īgj
[
Âjσ̂j + Â†

j σ̂
†
j , ρ̂
]
+DAj [ρ̂] +Dσj [ρ̂]

)
. (70)

This is equivalent to the master equation of a collection of independent single-qubit lasers [29] for each
bosonic mode Âj (note that exchanging the dummy labels between the qubit states, |g〉j # |e〉j, is equivalent
to a σ̂j # σ̂†

j swap, turning the qubit dissipation into pumping, and the Hamiltonian into a
Jaynes–Cummings one). This opens the possibility of experimentally engineering nonclassical multimode
lasing, something that sounds quite exotic specially in the context of optical settings.
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