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Recent advances in the development of modern quantum technologies have opened the possibility of studying
the interplay between spontaneous parametric down-conversion and optomechanics, two of the most fundamental
nonlinear optical processes. Apart from practical reasons, such a scenario is very interesting from a fundamental
point of view, because it allows exploration of the optomechanical interaction in the presence of a strongly
quantum-correlated field, the spontaneously down-converted mode. In this work we analyze this problem from
two approximate but valuable perspectives: the classical limit and the limit of small quantum fluctuations. We
show that, in the presence of optomechanical coupling, the well-known classical phase diagram of the optical
problem is modified by the appearance of additional dynamical instabilities. As for the quantum-mechanical
description, we prove the ability of the squeezed down-converted field to cool down the mechanical motion not
only to thermal but also to squeezed thermal mechanical states, and in a way that can be much less sensitive to
the parameters (e.g., detuning of the driving laser) than standard sideband cooling.
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I. INTRODUCTION

Spontaneous parametric down-conversion is a process
which occurs in crystals with second-order optical nonlinear-
ity, where light at some frequency 2ω0 can be transformed into
light at frequencies ωs and ωi such that ωs + ωi ≈ 2ω0 [1–4].
When the crystal is introduced in an optical cavity, which has
the effect of enhancing the nonlinear interaction and filtering
the fields at once, we obtain the so-called optical parametric
oscillator (OPO), in which the down-converted field starts os-
cillating in the cavity only once the power of the pumping laser
exceeds some threshold value (such that the nonlinear gain can
compensate for the cavity losses) [1,3,4]. These devices have
found many applications both in classical and in quantum
optics. In the classical case, they are among the most tunable
sources of light, allowing us to transform laser light into almost
any (optical) frequency [1]. From a quantum point of view, the
down-converted photons show strong quantum correlations;
particularly relevant to this work is the degenerate opti-
cal parametric oscillator (DOPO), in which down-converted
photons have the same frequency, ωs = ωi ≈ ω0, and the
corresponding output field shows nearly perfect quadrature
squeezing when working close to threshold [2–4]. Indeed, DO-
POs are nowadays the sources of the highest quality squeezed
light [5–8], which can be used to increase the sensitivity of
measurements beyond the standard quantum limit [9–13] or to
generate entangled beams for quantum information purposes
[14–16].

On the other hand, we have optomechanical systems, where
some mechanical degree of freedom is coupled to a light field
via, e.g., radiation pressure [17–20]. When the interaction oc-
curs inside a cavity, the Lorentzian density of modes provided
by the resonator, together with the injection of a coherent
laser field with the proper detuning with respect to the cavity
resonance, allows us to cool down the mechanical degree
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of freedom to its quantum mechanical ground state through
sideband cooling [21–33] . Since the mechanical degree of
freedom is usually a mesoscopic system formed by many
atoms, optomechanics provides a very promising platform
where studying the transition from the microscopic quantum
world to our natural macroscopic classical one, allowing one,
for example, to put bounds on collapse models [34–37].
From a practical point of view, apart from offering a new
platform where performing traditional quantum optical tasks
such as the generation of squeezed light [38–41], transparency
windows [42–46], or photon blockade effects [47], optome-
chanical systems might be a perfect interface between optical
and microwave technologies, since mechanical degrees of
freedom couple to both electromagnetic scales [48–57].

As for actual optomechanical implementations, they man-
ifest in many different forms [20]: cavities with mirrors
attached to cantilevers [21,22] or in suspension [24], flexible
membranes placed inside optical cavities [25,26,29], and
localized mechanical modes in photonic crystal cavities [28]
are some examples. For our current purposes, the most
relevant implementations consist in (i) whispery-gallery-
mode resonators (microtoroids and microdisks, for example),
where light circulates around its edge via total internal
reflection, pushing the whole structure, hence exciting some
of its mechanical modes [23,58], and (ii) flexible drum-
shaped capacitors coupled to superconducting LC resonators
[27,44,59].

From a fundamental point of view, the interplay between
optomechanics and down-conversion seems to be a natural
and interesting problem to study within the nonlinear quantum
optics community. Recent theoretical results for the case in
which the down-converted mode is seeded with an external
field predict that such a stimulated down-conversion process
is able to enhance optomechanical cooling [60], normal mode
splitting [61], and the sensitivity of mechanical quadrature
measurements [62], as well as to generate mechanically
squeezed states [63] or even bring the optomechanical inter-
action to the (single-quantum) strong-coupling regime [64].
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In the second-harmonic generation configuration (in which
only the down-converted frequency is driven), multipartite
optomechanical entanglement has also been predicted [65].

Modern platforms capable of combining down-conversion
and optomechanics in the same device have transformed
the motivation for studying such a scenario into a practical
one. In particular, miniaturized whispering-gallery-mode res-
onators can be fabricated directly with the typical crystalline
materials possessing second-order optical nonlinearity, such
that light can be down-converted while circulating on the
resonator [66–78]. A completely different, but equally realistic
implementation could consist of a superconducting circuit
in the degenerate parametric oscillation configuration [79]
coupled to a drum-shaped capacitor acting as a mechanical
degree of freedom [27,44,59] (see also [80] for a recent circuit
QED proposal). The third and natural option would consist in
using a standard OPO cavity built with a movable micromirror
similar to those in [21] and [22].

One of the most relevant questions in these scenarios
concerns the effect that the spontaneously down-converted
light, which shows strong quantum correlations, will have on
the mechanical state. As a step towards understanding this
question, in this work we analyze the system from a classical
perspective, providing also a small glance at the quantum
properties predicted by a linearization of quantum fluctuations
around the classical solution. For simplicity, we stick to the
degenerate case and assume that only the down-converted
field is coupled to the mechanical mode. The latter is a
natural situation in circuit setups (where the pump and down-
converted modes are provided by different linear circuits) or
when the movable mirror is introduced in an OPO that makes
use of dual semimonolithic designs [81] (see Fig. 1) to create
independent cavities for the pump and down-converted fields;

χ(2) ωsωp

Ωm

ωL

FIG. 1. Sketch of the degenerate optomechanical parametric
oscillator considered in this work. It consists of a cavity containing
a mode at frequency ωp (pump) driven by a laser at frequency
ωL. The pump cavity shares a χ (2) nonlinear crystal with another
cavity containing a resonance at frequency ωs close to ωL/2 (signal),
which can then be populated via degenerate down-conversion of the
pumping laser in the crystal. One of the mirrors of the signal cavity is
not fixed and can act as a mechanical oscillator forced by the radiation
pressure exerted from the light contained in the cavity. OPOs based
on dual semimonolithic cavities [81] can implement this exact setup,
but other platforms such as crystalline whispering-gallery-mode
resonators [66–78] and superconducting circuits [27,44,59,79,80] are
already at a point where the model analyzed in our work can be studied
experimentally.

in the case of crystalline whispering-gallery-mode resonators
it might require choosing a proper mechanical mode weakly
coupled to the optical modes around the pump frequency.
From a fundamental point of view, this configuration provides
probably the most exciting scenario, since the pump stays
near-coherent for most of the DOPO parameters, and its
coupling to the mechanics could mask the effects generated
by the quantum-correlated down-converted field.

Concerning the classical limit, we show that, with respect
to the usual DOPO scenario [82–84], the most relevant effect
that the optomechanical interaction has is the generation
of new dynamical instabilities, as well as the modification
of the region of intensity bistability. On the other hand,
regarding the quantum-linearized theory, we first argue how it
completely fails to capture the physics below threshold, where
the optomechanical interaction is purely nonlinear and requires
more sophisticated techniques to describe it, which is precisely
what we did in a recent work [85]. Nevertheless, the linearized
description provides reasonable predictions above threshold,
and we use it to show that the down-converted field can have
a deep impact on the mechanical state, but very different
from that of the standard coherently pumped optomechanical
cavity. In particular, we show that it can cool down the
mechanical motion in a way less sensitive to parameters
(particularly detuning) than the traditional sideband cooling,
even generating squeezed thermal mechanical states as the
optomechanical interaction is increased. Let us remark that an
understanding of the classical phase diagram is instrumental
prior to performing a more accurate quantum analysis, as we
emphasized in Ref. [85].

The article is organized as follows. First, we introduce the
model of the system, which we have called the degenerate
optomechanical parametric oscillator (DOMPO) and we
describe it through a set of quantum Langevin equations.
Next, we study the classical limit of the model, finding its
steady states and analyzing their stability. Finally, we apply
the standard linearization technique to study the quantum
properties of the mechanical mode in regions of the parameter
space where the classical stationary solution is stable.

II. THE MODEL

Even though the actual implementation can differ from
the simple picture sketched in Fig. 1, a DOMPO can be
schematically understood as depicted there. Consider a cavity
pumped by a laser at frequency ωL close to one of its
resonances ωp. This cavity (denoted they pump cavity) shares a
second-order nonlinear crystal with another cavity (the signal
cavity) in which a resonance ωs close to ωL/2 exists and,
therefore, can be populated via down-conversion of pump
photons in the crystal. Finally, one mirror of the signal cavity
can oscillate at frequency �m and then acts as a mechanical
oscillator which is forced via the radiation pressure exerted by
the signal field.

Let us denote by x̂m = Q̂/Q0 the displacement of the
mirror (Q̂) normalized to the zero-point position fluctuations
Q0 = √

�/2�mM , where M is the mirror’s mass. We also
normalize the corresponding momentum P̂ to the zero-point
momentum fluctuations P0 = �/Q0, obtaining the normalized
momentum p̂m = P̂ /P0. We define annihilation operators âj
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for pump (j = p) and signal (j = s) photons, with corre-
sponding creation operators â

†
j . These operators satisfy the

commutation relations [x̂m,p̂m] = 2i and [âj ,â
†
l ] = δjl , any

other commutator between them being 0. In a picture rotating at
the laser frequency ωL for the pump and ωL/2 for the signal, the
physical processes described in the previous paragraph are then
captured by the Hamiltonian Ĥ = ĤO + ĤM + ĤDC + ĤOM,
with [2–4,20]

ĤO = −
∑
j=p,s

��j â
†
j âj + i�EL(â†

p − âp), (1a)

ĤM = ��m

4

(
x̂2

m + p̂2
m

)
, (1b)

ĤDC = i�χ
(
âpâ

†2
s − â†

pâ
2
s

)
, (1c)

ĤOM = −gsâ
†
s âsx̂m, (1d)

where �p = ωL − ωp and �s = ωL/2 − ωs denote the detun-
ing of the laser with respect to the pump and signal modes, EL is
the pump cavity’s driving rate (proportional to the square root
of the power of the external laser), χ is the down-conversion
rate (proportional to the crystal’s nonlinear susceptibility),
and gs is the optomechanical scattering rate (which depends
strongly on the particular implementation).

In addition to these coherent processes, the system is
subject to incoherent processes. In particular, we need to
take into account the loss of photons through the partially
transmitting mirrors (open cavities) and the coupling of the
mechanical oscillator to its thermal environment, reaching
some equilibrium temperature T in the absence of light. We
choose to include these processes at the level of the Heisenberg
equations of motion, leading to the widely used quantum
Langevin equations [86,87]

dx̂m

dt
= �mp̂m,

dp̂m

dt
= −γmp̂m − �mx̂m + 2gsâ

†
s âs +

√
4γmn̄thp̂m,in(t),

dâp

dt
= EL − (γp − i�p)âp − χ

2
â2

s + √
2γpâp,in(t),

dâs

dt
= −(γs − i�s − igsx̂m)âs + χâpâ

†
s +

√
2γsâs,in(t), (2)

where γj are the rates of exchange of excitations of the modes
with their corresponding environments, and the input operators
have 0 mean, 〈âj,in(t)〉 = 〈p̂m,in(t)〉 = 0, and nonzero two-time
correlators,

〈âj,in(t)â†
j,in(t ′)〉 = 〈p̂m,in(t)p̂m,in(t ′)〉 = δ(t − t ′), (3)

and play the role of the environmental quantum fluctuations
driving the system. In this equations we have assumed to be
working in the high-temperature limit where the number of
phonons at thermal equilibrium can be approximated by n̄th ≈
kBT /��m � 1.

Before studying the equations, it is convenient to make
a variable change that will allow us to see how many free
parameters they really have. To this aim, we define the

normalized parameters

gDC = χ√
γpγs

, σ = χEL

γpγs
, κ = γp

γs
,

δj = �j

γj

, γ = γm

γs
, � = �m

γs
, g = gs/γs

gDC

√
�

, (4)

time τ = γst , system operators

b̂s = gDCâs, b̂p = √
κgDCâp,

p̂ = gDC√
�

p̂m, x̂ = gDC

√
�x̂m, (5)

and input operators

b̂j,in(τ ) = 1√
γs

âj,in(τ/γs),

p̂in(τ ) = 1√
γs

p̂m,in(τ/γs), (6)

which satisfy the same correlators as before [see Eq. (3)], but
now with respect to the dimensionless time τ . With these
changes, the quantum Langevin equations are transformed
into

dx̂

dτ
= �2p̂,

dp̂

dτ
= −γ p̂ − x̂ + 2gb̂†s b̂s +

√
4γ n̄th

�
gDCp̂in(τ ),

1

κ

db̂p

dτ
= σ − (1 − iδp)b̂p − 1

2
b̂2

s +
√

2gDCb̂p,in(t),

db̂s

dτ
= −(1 − iδs − igx̂)b̂s + b̂pb̂

†
s +

√
2gDCb̂s,in(t). (7)

It is interesting to note that g basically provides the ratio be-
tween the optomechanical and the down-conversion couplings,
and hence, assuming

√
� to be of order 1, they inform us about

which of the two nonlinear processes dominates.
The quantum Langevin equations are nonlinear operator

equations, and hence it is a formidable task to obtain results
directly from them without further approximations. In the fol-
lowing, we analyze two relevant limits of these equations: the
classical limit and the limit of “small” quantum fluctuations.

III. CLASSICAL ANALYSIS

The classical limit of the model is obtained by assuming
that all the modes of the system are in a coherent state.
Defining the corresponding amplitudes βj = 〈b̂j 〉, x = 〈x̂〉,
and p = 〈p̂〉, and taking the expectation value of the quantum
Langevin equations, (7), this approximation leads to the
classical equations

ẋ = �2p,

ṗ = −γp − x + 2g|βs|2,
κ−1β̇p = σ − (1 − iδp)βp − β2

s /2,

β̇s = −(1 − iδs − igx)βs + βpβ
∗
s . (8)

As these are nontrivial nonlinear equations, it is not possible
to find their time-dependent analytical solutions other than
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FIG. 2. Bifurcations and corresponding stable and unstable regions for one particular example for which we have chosen γ = 0.005,
� = −δs = 10, δp = 5, and κ = 100, the first three being typical parameters when aiming for sideband cooling in optomechanical systems.
Note that this fixes all the parameters but g and Is (we use the steady-state intensity Is as a parameter instead of σ , because the latter can be
uniquely determined from the former but, in general, not the other way around). In (b) we show in the space of these parameters the turning
point (thick red line) and the single Hopf instability (thick blue line) found in this example, coloring the regions where they make the stationary
solution unstable. Note that for this choice of parameters, in the absence of optomechanical coupling there are no instabilities apart from the
trivial pitchfork bifurcation, as can be checked from conditions (14) and (17). Hence, we see that the effect of the optomechanical coupling in
this case consists in introducing new instabilities which greatly reduce the domain of stability of the nontrivial stationary state. In (a) and (c) we
show how the steady-state intensity Is depends on the injection σ 2 for two specific values of g, corresponding to the vertical dashed gray lines
in the parameter space (b), denoting its unstable and stable regions by dashed and solid lines, respectively. In (a) we have chosen g = 0.2, for
which no instabilities are present in the nontrivial solution, as can be appreciated in (b), and hence only the pitchfork instability connecting the
trivial and nontrivial solutions is present. In (c), on the other hand, we have chosen g = 0.25, for which we find both a turning point (and hence
a domain of bistability between the trivial and the nontrivial solutions) and a Hopf bifurcation leading to time-dependent asymptotic solutions.

numerically. However, working with a dissipative system, we
are mainly interested in its behavior for long times (asymptotic
limit), and there is a lot that we can say about this without really
solving the full nonlinear equations; in particular, we follow
closely the procedure already applied to detuned DOPOs
[82–84].

A. Stationary solutions

The simplest asymptotic behavior that one can expect is
that the system reaches some steady state. Hence, it is always
convenient to start by finding the time-independent solutions
to the nonlinear equations, which we denote with a bar, e.g., x̄;
when needed, we write the complex field amplitudes as β̄j =√

Ij exp(iϕj ), with real variables ϕj ∈] − π,π ] and Ij � 0.
All the stationary solutions of (8) have p̄ = 0 and x̄ = 2gIs,

leaving us with

σ = (1 − iδp)β̄p + β̄2
s /2, (9a)

β̄pβ̄
∗
s = (1 − iδs − 2ig2Is)β̄s. (9b)

We then distinguish two types of stationary solutions: trivial or
below-threshold solutions, which have Is = 0; and nontrivial
or above-threshold solutions, with Is 
= 0.

In the trivial case, the solution is simply

β̄s = 0 and β̄p = σ/(1 − iδp). (10)

As for the nontrivial solutions, we find their analytic ex-
pression as follows. First, note that (9b) implies β̄p =
(1 − iδs − 2ig2Is)e2iϕs , which, plugged into (9a), leads to
e−2iϕsσ = (1 − iδp)(1 − iδs − 2ig2Is) + Is/2, whose absolute
value squared gives us a second-order polynomial for the signal

intensity,

σ 2 =
[

1 + Is

2
− δp(δs + 2g2Is)

]2

+ (δp + δs + 2g2Is)
2

≡ q0 + q1Is + q2I
2
s , (11)

with

q0 = (
1 + δ2

p

)(
1 + δ2

s

)
, (12a)

q1 = (1 − δpδs) + 4δs
(
1 + δ2

p

)
g2, (12b)

q2 = 4g4 + (
1
2 − 2δpg

2)2
. (12c)

Depending on the value of the parameters, this equation can
have a single real positive solution or two, as shown in Fig. 2.
In order to find the values of the parameters (in particular, of
the injection σ and the detunings δj , experimentally tunable)
for which this happens, we just need to obtain the expression
for the turning point, labeled “TP” in Fig. 2, which is nothing
but the extremum of σ 2(Is), that is,

∂σ 2

∂Is

∣∣∣∣
Is=ITP

s

= 0 =⇒ ITP
s = −q1/2q2. (13)

Taking into account that q2 > 0, the turning point will exist
only if q1 < 0, which gives us a condition on the detunings for
a given optomechanical coupling:

δpδs > 1 + 4δs
(
1 + δ2

p

)
g2. (14)

Hence, when this condition is satisfied, we will have two
possible steady-state signal intensities (three counting the
trivial one) for injections σ 2 ∈]q0 − q2

1/4q2,q0] [see Fig. 2(c)].
Let us anticipate, however, that the branch connecting the
trivial solution with the upper branch of the nontrivial one is
unstable (see Fig. 2), so only two of the three possible solutions
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can be observed in real experiments, leading to an intensity
bistability common in nonlinear optical systems. Finally, note
that condition (14) with g = 0 is in agreement with that found
for detuned DOPOs [82–84].

B. Linear stability analysis

The existence of a mathematical solution of the nonlinear
equations is not enough to ensure its physical reality: it
also needs to be stable against perturbations, since in the
real world these are unavoidable, and therefore we would
never be able to observe the system in the corresponding

solution otherwise. Hence, in the following we proceed
to study the stability of the stationary solutions found
above.

Let us collect the variables of the system in a vector
b = col(x,p,βp,β

∗
p ,βs,β

∗
s ). The stability of a given stationary

solution b̄ can be analyzed as follows [88]. We consider small
fluctuations around it by writing b(t) = b̄ + δb(t), introduce
this ansatz into the nonlinear system (8), and keep only terms
which are linear in the fluctuations, obtaining a linear system
δḃ = Lδb, whereL is the so-called linear stability matrix. This
matrix depends on the system parameters and the particular
stationary solution whose stability we are considering and, in
our case, is given by

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �2 0 0 0 0

−1 −γ 0 0 2gβ̄∗
s 2gβ̄s

0 0 −κ(1 − iδp) 0 −κβ̄s 0

0 0 0 −κ(1 + iδp) 0 −κβ̄∗
s

igβ̄s 0 β̄∗
s 0 −(1 − iδs − igx̄) β̄p

−igβ̄∗
s 0 0 β̄s β̄∗

p −(1 + iδs + igx̄)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

Since the equation for the fluctuations is linear, it is then clear
that their dynamical behavior is controlled by the eigenvalues
of this matrix. In particular, the fluctuations will be damped
and disappear in the asymptotic limit only if the real part of all
the eigenvalues is negative. Hence, we say that a stationary
solution b̄ is stable (and therefore physical) when all the
eigenvalues of its corresponding linear stability matrix L(b̄)
have a negative real part.

The points in the parameter space where at least one of
the eigenvalues has 0 real part are known as critical points,
instabilities, or bifurcations, and they separate the regions in
which the stationary solution changes from stable to unstable.
We can distinguish two types of instabilities: pitchfork or
static bifurcations, where the imaginary part of the relevant
eigenvalue is also 0, which connect the stationary solution with
another stationary solution; and Hopf or dynamic bifurcations,
where the imaginary part of the relevant eigenvalue is nonzero,
which connect the stationary solution with a time-dependent
solution (usually some periodic solution, known in this context
as a periodic orbit or limit cycle).

Before proceeding, let us comment on one subtle point
concerning the system parameters. The linear stability ma-
trix, (15), does not depend explicitly on the injection σ , it
does so only implicitly, through the intracavity stationary
amplitudes β̄p and β̄s. It is then convenient to use either Ip

or Is as a parameter instead of σ when dealing with the trivial
or nontrivial solutions, respectively, knowing that σ can always
be uniquely determined from them by using (10) or (11).

Let us now proceed to discuss the instabilities that can
be found in the DOMPO. We provide a summary of the
main results here and leave the detailed derivations for Ap-
pendix A. Concerning the trivial solution, it possesses only one
bifurcation, appearing when Ip = 1 + δ2

s . The trivial solution
becomes unstable for Ip > 1 + δ2

s or, in terms of the injection,
when σ 2 > (1 + δ2

s )(1 + δ2
p). Note that this is precisely the

point at which the trivial and nontrivial solutions coalesce
(see points labeled “PB” in Fig. 2), and hence this pitchfork
bifurcation simply connects these two stationary solutions.
As for the nontrivial solution, it provides one more static
instability, at Is = ITP

s . Hence, we see that the turning point of
the nontrivial solution is an instability, and it is simple to check
that the lower branch of the nontrivial solution connecting
the upper branch with the trivial solution is unstable (for
example, by evaluating the eigenvalues numerically for one set
of parameters), as shown in Fig. 2. In other words, the turning
point is a pitchfork bifurcation connecting the unstable lower
branch with the upper branch, which is stable in all its domain
of existence, except for possible Hopf bifurcations, which we
discuss next. The behavior of the dynamical instabilities of
the nontrivial solution is very rich in the DOMPO. Let us first
note that in the absence of optomechanical coupling (g = 0)
there is a single Hopf bifurcation, located at (see Appendix A
and [82–84])

IHB
s = −

(
1 + δ2

p

)[
(2 + κ)2 + κ2δ2

p

]
(1 + κ)2

(
2 + κ + κδ2

p + 2δpδs
) , (16)

which requires

δpδs < −1 − κ
(
1 + δ2

p

)
/2 (17)

to exist (otherwise, IHB
s < 0), which incidentally means that

it does not exist when there is bistability in the system (which
requires δpδs > 1). It is possible to show that the portion of
the nontrivial solution with Is > IHB

s becomes unstable, and
the limit cycles become chaotic for large enough injections
[82–84]. The main effect of optomechanics, that is, of
increasing g, is both changing the location of this dynamical
instability already present for g = 0 and creating new ones
that cannot be understood as a deformation of the latter. This
is what we show in Fig. 2(b) for one example, where we plot
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the signal intensity of the Hopf instability that we have found
as a function of g. Let us remark that in the g 
= 0 case the
complicated form of the linear stability matrix has prevented us
from finding simple analytic expressions for such instabilities,
but we have been able to find a simple way to compute them
efficiently with the help of symbolic programs that has allowed
us to perform an exhaustive analysis (see Appendix A).

IV. QUANTUM PROPERTIES WITHIN THE LINEARIZED
DESCRIPTION

In order to characterize the quantum properties of the
DOMPO, we now apply the widely used method of standard
linearization [89–92]. In this approach, one assumes that the
asymptotic classical solution of the system is a strong attractor,
and hence quantum mechanics acts just as strongly damped
fluctuations or noise driving the system continuously and
trying to bring it out of equilibrium. As we did in the classical
analysis, let us collect the fundamental operators of the system
into a vector, b̂ = col(x̂,p̂,b̂p,b̂

†
p,b̂s,b̂

†
s ). In this scenario, it is

then convenient to write the operators as b̂(τ ) = b̄ + δb̂(τ ),
where we remember that b̄ is the stationary solution found
for the operators within the classical description of the system
(we do not consider periodic orbits in this work, although they
can also be studied using a similar approach). Assuming that
b̄ is a strong classical attractor, that is, that the eigenvalues
of its associated linear stability matrix L are large enough for
quantum fluctuations to be strongly damped, one can neglect
terms of the quantum Langevin equations, (7), beyond linear
order in the fluctuations δb̂, turning them into the linear system

d

dτ
δb̂ = Lδb̂ +

√
2gDĈf(τ ), (18)

where we have defined the input-vector operator

f̂(τ ) = col

(
0,

√
2γ n̄th

�
p̂in,b̂p,in,b̂

†
p,in,b̂s,in,b̂

†
s,in

)
, (19)

which acts precisely as a quantum force continuously driving
the system out of equilibrium. Note that the two-time input
correlators can be written in the compact form 〈f̂j (τ )f̂l(τ ′)〉 =
Mjlδ(τ − τ ′), where Mjl are the elements of the matrix M =
Mm ⊕ Mp ⊕ Ms with

Mm =
(

0 0
0 2γ n̄th/�

)
,

Mp =
(

0 κ

0 0

)
, (20)

Ms =
(

0 1
0 0

)
.

In the following, we particularize these linearized quantum
Langevin equations to the two types of classical stable
stationary solutions that we have found (trivial and nontrivial),
analyzing the behavior that they predict for the mechanical
mode. From the previous discussion, it is clear that such a
linearized description will break down close to the critical
points of the classical theory, but as proven again and again
in many nonlinear optical systems, its predictions usually
provide the correct tendency of observables as one approaches

the critical points, at the very least qualitatively. There are
some exceptions, however, corresponding to cases in which
the quantum mechanical effects are purely nonlinear, so that
linearization completely misses them. Indeed, we present one
such example now.

A. Failure of the method below threshold

The first interesting thing to note about the linearization
approach is how it completely fails to capture any optome-
chanical phenomena that might be occurring below threshold,
that is, when the signal field is switched off classically, so that
there is no coherent background in the mechanical and signal
modes. This is clearly seen from the fact that, as we show in
Sec. 1 of Appendix A, the linear stability matrix is written as
the direct sum of matrices acting on each mode, so that the
equations for the mechanical fluctuations δx̂ = x̂ and δp̂ = p̂

simply read

dx̂

dτ
= �2p̂, (21a)

dp̂

dτ
= −γ p̂ − x̂ +

√
4γ n̄th

�
gDCp̂in(τ ). (21b)

These equations receive absolutely no information from the
optical modes, in particular, corresponding to a harmonic
oscillator in thermal equilibrium with its environment. In the
same way, the fluctuations of the optical mode δb̂s = b̂s are
completely unaffected by the mechanics, since they obey the
usual below-threshold DOPO dynamics,

db̂s

dτ
= (−1 + iδs) b̂s + β̄pb̂

†
s +

√
2gDCb̂s,in(τ ). (22)

As is well known [2,3,86], the latter equations predict
that the signal mode gets more and more squeezed as the
critical point of the below-threshold solution Ip = 1 + δ2

s
is approached, denoted PB in Figs. 2(a) and 2(c). In fact,
the linearized description predicts an infinite photon number
exactly at threshold [90–92], which of course gets regularized
once more accurate approaches are used [89,93–101]. In
the light of this insight, it is hard to believe that, despite
the large number of photons present in the signal mode,
optomechanical scattering will have no effect whatsoever
on the fluctuations of the modes, as Eqs. (21) and (22)
predict, and one has to conclude that the linearization simply
fails to capture whatever phenomena occur below threshold.
In fact, in this regime the signal photons scattered by the
mechanical mode are purely quantum mechanical, with no
coherent or classical background, and this is precisely what
makes the optomechanical interaction â

†
s âsx̂m purely nonlinear

or non-Gaussian, which is ultimately the reason why any effect
related to it is completely lost upon linearization.

More sophisticated linearized descriptions such as the self-
consistent linearization introduced in [89] cannot work either,
since it is equivalent to making a Gaussian ansatz for the
full state of the system, while the optomechanical interaction
becomes purely non-Gaussian below threshold as we have
argued above. Hence, more elaborate techniques are required
below threshold, such as a numerical simulation based on the
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positive P representation [4,93–95,102] or the self-consistent
Mori projector operator (c-MoP) theory [101,103], which are
beyond the scope of this work, and we indeed explore in other
works [85]. Nevertheless, as we are about to see, standard
linearization can still be a useful tool, allowing us to analyze
the system above threshold and find indications of interesting
phenomena.

B. Above-threshold predictions

The situation is rather different above threshold. In this
case all the modes have a classical background, and hence it
is possible to linearize the optomechanical interaction without
losing it completely. Consequently, it is to be expected that,
even though the method will fail at the critical points of the
classical theory, it will provide us with a good qualitative
picture of the trend that the quantum properties of the system
follow.

As explained above, the linearization method is equivalent
to making a Gaussian ansatz [14–16] for the state of the
quantum fluctuations around the classical solution [89,101].
Hence, within this approach the quantum properties of the
system are completely characterized by the covariance matrix
of all the modes [14–16]. Given the position x̂j = â

†
j + âj

and momentum p̂j = i(â†
j − âj ) quadratures of the optical

modes (j = p,s) and defining the quadrature vector oper-
ator r̂ = col(x̂m,p̂m,x̂p,p̂p,x̂s,p̂s), the covariance matrix V

is defined as the symmetric matrix with elements Vjl =
〈δr̂j δr̂l + δr̂lδr̂j 〉/2 [14–16]. In Appendix B we explain how
this object can be efficiently evaluated numerically for any
value of the parameters directly from the linearized Langevin
equations, (18), specifically from the eigensystem of the linear
stability matrix, (15).

On the other hand, as explained in Sec. I, the main
question that we would like to explore is the effect that the
optomechanical interaction has on the mechanical state. In the
following we show through a set of examples how the squeezed
down-converted field is able to cool down the mechanical
motion. Moreover, it does so in a way that can be much
less sensitive to parameters than standard sideband cooling.
Furthermore, apart from cooling it, the example will show a
trend of the optomechanical interaction to squeeze the thermal
mechanical motion.

In order to show this, we first find the reduced state of
the mechanical mode. Since within the linearized picture
the state of the whole system is Gaussian, the reduced
mechanical state is Gaussian as well, with a covariance matrix
given by the corresponding submatrix of the full covariance
matrix, (B4) [16]:

Vm =
(

V11 V12

V21 V22

)
. (23)

In order to get a better physical picture of the mechanical state,
we further exploit the fact that any single-mode Gaussian state
can be written as a squeezed thermal state up to a rotation in
phase space [15,16] (which simply provides the direction of
phase space along which squeezing occurs). This means that
the mechanical state ρ̂m can be written in the form

R̂(θ )ρ̂mR̂†(θ ) = Ŝ(reff)ρ̂th(n̄eff)Ŝ
†(reff) ≡ ρ̃m, (24)

for some phase-shift operator R̂(θ ) = exp[iθ (x̂2
m + p̂2

m)/4],
where ρ̂th(n̄eff) is a thermal state with effective phonon number
n̄eff , and Ŝ(reff) = exp[ireff x̂mp̂m/2] is a squeezing operator
with effective squeezing parameter reff . We are, in particular,
interested in the effective phonon number n̄eff and the effective
mechanical squeezing e−2reff , which can be written in terms of
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FIG. 3. Density plots of the effective phonon number n̄eff and mechanical squeezing e−2reff as a function of the optomechanical coupling g

and the intracavity signal intensity Is. The rest of the parameters have the same values as in Fig. 2, and we assume a phonon number n̄th = 100
at thermal equilibrium. Note how the mechanical state is strongly affected by the optomechanical interaction, which allows both for cooling
and for squeezing of the mechanical motion.
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FIG. 4. Density plots of the effective phonon number n̄eff and mechanical squeezing e−2reff as a function of the signal detuning δs and
intensity Is. The rest of the parameters have the same values as in Fig. 3, and we have fixed the optomechanical coupling to g = 0.1. Left panels
correspond to the DOMPO; right panels, to standard sideband cooling. It is to be appreciated how very insensitive the cooling obtained in the
DOMPO is to the detuning, which has to be approximately fixed at −� (red sideband) in a standard sideband-cooling scenario. Note that the
white regions correspond to areas of the parameter space where the classical stationary solution is unstable, and hence linearization cannot be
applied.

the elements of the covariance matrix as (see Appendix B)

n̄eff = (
√

V+V− − 1)/2 and e−2reff =
√

V−/V+, (25)

where V∓ = tr{Vm}/2 ∓
√

tr{Vm}2/4 − det{Vm} are the eigen-
values of the mechanical covariance matrix. Let us now
analyze these parameters for a specific situation.

We take as an example the parameters in Fig. 2, for which
we have already presented the stable and unstable regions of
the classical stationary solution. In Fig. 3 we show the variation
of the effective thermal phonon number n̄eff and squeezing
e−2reff with g, as we move above threshold, that is, Is > 0. It
can be appreciated how the mechanical state is deeply affected
by the optomechanical interaction. In particular, we see that
the effective phonon number can decrease to low values, which
shows the ability of the down-converted field to cool down the
mechanical motion. Moreover, as the optomechanical coupling
is enhanced, the effective squeezing levels of the thermal
mechanical state increase, up to about 50% squeezing in the
figure. This opens the possibility of using the DOMPO to
generate squeezed mechanical states.

In Fig. 4 we compare the cooling obtained in our system
with the cooling that would be obtained in a standard sideband
cooling scenario. In particular, for a fixed optomechanical
coupling g, we show n̄eff and e−2reff as a function of the signal
detuning δs and Is, for both the DOMPO and standard sideband
cooling. We have studied the latter case by considering the
standard scenario, consisting of a single driven optical mode
interacting with the mechanics, described by the (normalized)
quantum Langevin equations

dx̂

dτ
= �2p̂,

dp̂

dτ
= −γ p̂ − x̂ + 2gb̂†s b̂s +

√
4γ n̄th

�
gDCp̂in(τ ),

db̂s

dτ
= E − (1 − iδs − igx̂)b̂s +

√
2gDCb̂s,in(t), (26)

where E is the (normalized) amplitude associated with the
laser which drives the optical mode. Note that gDC appears
here just because we are using the same normalization as in the
rest of the paper [see Eqs. (5)], which is convenient for the sake
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of comparison; in any case, the final results are independent
of this parameter, as can be appreciated from the form of
the covariance matrix in Eq. (B4). Collecting the relevant
operators in the vector b̂ = col(x̂,p̂,b̂s,b̂

†
s ), these equations

take the linearized form, (18), with a noise term f̂(τ ) without
the pump components, and with a linear stability matrix

L=

⎛⎜⎜⎜⎝
0 �2 0 0

−1 −γ 2gβ̄∗
s 2gβ̄s

igβ̄s 0 −(1 − iδs − igx̄) 0

−igβ̄∗
s 0 0 −(1 + iδs + igx̄)

⎞⎟⎟⎟⎠,

(27)

which is the usual one found in the standard optomechanical
case [32,33]. Following the approach explained above, we
obtain the covariance matrix, (B4), associated with this
problem and, from it, the effective thermal phonon number
and effective mechanical squeezing.

The differences in the cooling performance for these two
systems can be appreciated in Fig. 4. In particular, it is apparent
that the cooling obtained in the DOMPO is less sensitive to
the detuning, which in standard sideband cooling needs to be
tuned to the red sideband δs ≈ −�. This insensitivity to the
system parameters is something that we have also observed for
other parameters and in other regions of the parameter space,
and it constitutes a main difference between the DOMPO and
standard sideband optomechanical cooling.

V. CONCLUSIONS AND OUTLOOK

In conclusion, in this work we have analyzed the DOMPO
from two approximate (but relevant) perspectives: the classical
limit and the linearized theory of quantum fluctuations. From
a fundamental point of view, this study has been motivated by
the question, How does a quantum-correlated field affect the
mechanical motion? From a practical viewpoint, the study is
timely because it is to be expected that the analyzed model
will be experimentally implemented soon, in particular, in
the form of crystalline whispering-gallery-mode resonators or
superconducting circuits.

We have made an exhaustive analysis of the classical phase
diagram, which provides highly relevant information prior to
the application of more accurate quantum techniques (see [85]
for an example in this direction). Our results show that the
optomechanical interaction has the effect of introducing new
dynamical instabilities not present in the DOPO, as well as
changing the location of the instabilities already present in it.

As for the quantum properties, when working above
threshold the linearized theory has shown the ability of
the quantum-correlated (squeezed) field to cool down the
mechanical motion, not only to a regular thermal state, but also
to a squeezed thermal state as the optomechanical coupling is
enhanced. Moreover, such cooling has been shown to be more
insensitive to the parameters (most prominently detuning)
than the one obtained through standard sideband cooling.
Unfortunately, in the three-mode problem defined by the
DOMPO it is very challenging to get analytical results from
the linearization technique or even to get a conclusive physical
picture of the observed phenomenology. Therefore, it will

be interesting to apply other techniques which might clarify
the physical processes underlying the results presented here.
Techniques such as the adiabatic elimination of the optical
modes in the master equation of the system might be key to
this purpose.

Finally, we emphasize again the failure of the linearization
theory below threshold, where the optomechanical interaction
becomes purely nonlinear. This opens an even more interesting
venue, since it is a problem which will require more elaborate
techniques capable of capturing non-Gaussian effects. Particu-
larly relevant for us is the c-MoP theory [103] that we recently
applied to the DOPO problem [101], which also has the virtue
of regularizing the results at the critical points of the classical
theory. With the help of this approach we showed in a recent
work [85] that, even below threshold, the down-converted field
can cool down the mechanical motion, through a process that
we identified by a “cooling by heating” mechanism [104]. It
will thus be interesting to analyze whether this is also the
mechanism responsible for the cooling that we observe above
threshold in this work.

ACKNOWLEDGMENTS

We have benefited from discussions with Yue Chang,
Christoph Marquardt, Eugenio Roldán, Tao Shi, Germán J. de
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APPENDIX A: DETAILS OF THE STABILITY ANALYSIS
OF THE CLASSICAL SOLUTIONS

We provide in this Appendix all the details concerning our
treatment of the instabilities present in the DOMPO model,
which we summarize in Sec. III B.

1. Stability of the trivial solution

In the case of the trivial stationary solution (β̄s = 0), the
linear stability matrix, (15), is highly simplified, acquiring,
in particular, a box structure L = Lm ⊕ Lp ⊕ Ls, where the
second block is already in diagonal form,

Lp =
(−κ(1 − iδp) 0

0 −κ(1 + iδp)

)
, (A1)

and its two eigenvalues have negative real part; the first block
is given by

Lm =
(

0 �2

−1 −γ

)
, (A2)
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whose eigenvalues λ(±)
m = −(γ ±

√
γ 2 − 4�2)/2 also have

negative real part, and finally, the last block reads

Ls =
(−1 + iδs β̄p

β̄∗
p −1 − iδs

)
, (A3)

with eigenvalues

λ(±)
s = −1 ±

√
Ip − δ2

s . (A4)

Hence, as commented in the text, we see that λ(+)
s provides a

static instability of the trivial solution, located at Ip = 1 + δ2
s .

2. Stability of the nontrivial solution

In the case of the nontrivial solution the 6 × 6 linear stability
matrix, (15), does not have a box structure, and hence the
eigenvalues do not have simple analytic expressions. However,
we are not as interested in the actual eigenvalues as we are in
the points where the real part of some of them becomes 0, since
these are the points marking the instabilities, and these points
can be found by analyzing the characteristic polynomial of the
stability matrix, which we write as P (λ) = ∑6

n=0 cnλ
n. Most

of the coefficients cn(Is,δs,δp,g,κ,γ,�) are quite lengthy, and
hence we do not show them here, except for the independent
one, which can be written as c0 = 4q2Is + 2q1, where q1 and
q2 are defined in (12).

Given the characteristic polynomial, the static instabilities
can be found from the condition P (λ = 0) = 0; that is, they
are located in the region of the parameter space defined by
the equation c0 = 0, which in our case gives Is = ITP

s as
mentioned in the text. We can then try to do the same with the
Hopf bifurcations, but in that case the expressions are not as
easy to handle. It is instructive to first consider the case without
optomechanical coupling, g = 0. In this case the characteristic
polynomial can be factorized as P (λ) = PDOPO(λ)Pm(λ),
where Pm(λ) = λ2 + γ λ + �2 is the characteristic polynomial
associated with the free mechanical motion (hence showing no
instabilities), while PDOPO(λ) = ∑4

n=0 dnλ
n, with

d0 = κ2Is(Is + 2 − 2δpδs),

d1 = 2κ[Is + κ
(
1 + Is + δ2

p

)
],

d2 = κ[4 + 2Is + κ
(
1 + δ2

p

)
],

d3 = 2(1 + κ),

d4 = 1, (A5)

is the characteristic polynomial associated with the optical
modes coupled through the parametric down-conversion pro-
cess, that is, to the DOPO [82–84]. The Hopf instabilities are
found by locating the points in the parameter space where the
eigenvalues become purely imaginary, λ = iωHB, where the
real parameter ωHB is known as the Hopf frequency (providing
the frequency of the periodic solution which is born right
at the bifurcation). Applying this condition to the DOPO’s
characteristic polynomial, we get

PDOPO(λ = iωHB) = (
d0 − d2ω

2
HB + d4ω

4
HB

)
+ iωHB

(
d1 − d3ω

2
HB

) = 0; (A6)

the imaginary part of this equation provides us with the Hopf
frequency

ω2
HB = d1

d3
= κ

[
Is + κ

(
1 + Is + δ2

p

)]
1 + κ

, (A7)

which is well defined for every value of the parameters, while
the real part of (A6) provides the condition d0d

2
3 + d4d

2
1 −

d2d1d3 = 0, which can be solved for Is analytically, leading to
the simple expression of Eq. (16) provided in the text.

In the g 
= 0 case the large order of the characteristic
polynomial has prevented us from finding simple analytic
expressions for the dynamical instabilities of the DOMPO. Let
us thus explain how we have dealt with them. Proceeding as in
the previous case, the real and imaginary parts of P (λ = iωHB)
provide us with two coupled equations:

c0 − c2ω
2
HB + c4ω

4
HB − c6ω

6
HB = 0, (A8a)

ωHB
(
c1 − c3ω

2
HB + c5ω

4
HB

) = 0. (A8b)

We can see that ωHB = 0 and c0 = 0 is a solution of the
equations, that is, they contain the pitchfork bifurcation, which
is not surprising since they are general and valid for any type of
instability. Now, for ωHB 
= 0, we can proceed as follows. The
second equation, (A8b), can be solved for the Hopf frequency
as

ω2
HB,± =

c3 ±
√

c2
3 − 4c1c5

2c5
; (A9)

these solutions can be introduced into (A8a), but unfortunately,
the resulting equations do not allow us to find a simple
analytic solution for Is. However, a symbolic program such
as Mathematica allows us to find analytic solutions, provided
that we write the equation as a more manageable polynomial.
In particular, let us write ω2

HB,± = l ± r with l = c3/2c5 and

r =
√

c2
3 − 4c1c5/2c5, which allows us to rewrite (A8a) as

c0 − c2l + c4(l2 + r2) − c6(l3 + 3lr2)

= ±r[c2 − 2c4l + c6(3l2 + r2)]. (A10)

The square of this expression provides a sixth-order polyno-
mial equation for Is, whose solutions can be efficiently handled
by a symbolic program. Note that by taking the square of the
previous equation, we are indeed introducing extra fictitious
solutions for Is, but we have checked that these extra solutions
are always complex, and hence they do not provide anything
which could be interpreted as instabilities. This procedure
has allowed us to make an exhaustive numerical analysis of
the Hopf instabilities for g 
= 0, of which we have shown a
characteristic example in Fig. 2.

APPENDIX B: EVALUATION OF THE COVARIANCE
MATRIX AND THE EFFECTIVE MECHANICAL

PARAMETERS

In this section we explain a route to find the covariance
matrix of the DOMPO directly from the linearized quantum
Langevin equations, (18). We also prove expression (25) for the
effective mechanical thermal phonon number and squeezing.
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In order to find the covariance matrix V we proceed as
follows. First, we find the left eigenvectors of the linear
stability matrix. These can be computed as the eigenvectors of
its transpose, {LT wj = λj wj }j=1,2,...,6, from which we build
the matrix W = col(wT

1 ,wT
2 , . . . ,wT

6 ), as well as the diagonal
matrix of eigenvalues � = diag(λ1,λ2, . . . ,λ6). With these
definitions, we have WL = �W . Hence, applying W on the
left-hand side of the linearized Langevin equations, (18), and
defining the vector ĉ(τ ) = Wδb̂(τ ), we get a set of uncoupled
linear equations for its components, leading to the solution

ĉ(τ ) =
√

2gDC

∫ τ

0
dτ ′e�(τ−τ ′)W f̂(τ ′) (B1)

in the asymptotic limit τ � maxj=1,2,...,6 Re{λj }−1. It is then
straightforward to compute the corresponding correlation
matrix C, with elements Cjl(τ ) = 〈ĉj (τ )ĉl(τ )〉, which, in the
asymptotic limit, reads

Cjl = −2g2
DC

(
WMWT

)
j l

λj + λl

, (B2)

where the matrix M is defined in (20).
On the other hand, the quadrature vector r̂ is related to the

vector b̂ by r̂ = Rb̂, where R = Rm ⊕ Rp ⊕ Rs, with

Rm = 1

gDC

(
1/

√
� 0

0
√

�

)
,

Rp = 1

gDC
√

κ

(
1 1
−i i

)
, (B3)

Rs = 1

gDC

(
1 1
−i i

)
,

and hence, its fluctuations can be written as δr̂(τ ) =
RW−1ĉ(τ ), leading to the final form of the covariance matrix

in the asymptotic limit

V = RW−1(C + CT )W−1T RT . (B4)

This is the expression that we have used to compute the
Gaussian steady state of the system, which can be efficiently
evaluated numerically for any value of the parameters, since it
just requires diagonalizing the 6 × 6 matrix LT .

Let us now derive the relation between the effective
mechanical parameters and the elements of the mechanical
covariance matrix. In order to find it, we just need to realize
that the thermal state is a Gaussian state with covariance
matrix Vth(n̄eff) = (2n̄eff + 1)I2×2, where I2×2 is the 2 × 2
identity matrix, while the squeezing operator simply acts as
the symplectic transformation S(reff) = diag(e−reff ,ereff ) in the
space of the covariance matrices [15,16]. Hence, the Gaussian
state corresponding to (24) has a diagonal covariance matrix:

Ṽm(n̄eff,reff) = S(reff)Vth(n̄eff)ST (reff)

= (2n̄eff + 1)diag(e−2reff ,e2reff ). (B5)

Therefore, the phase shift R̂(θ ) applied to ρ̂m in Eq. (24) is
nothing but the rotation that diagonalizes Vm, turning it into

Ṽm = diag(V−,V+), (B6)

where the eigenvalues of Vm are given by V∓ = tr{Vm}/2 ∓√
tr{Vm}2/4 − det{Vm}. In other words, θ is the angle in phase

space that captures the direction in which squeezing is applied
to the mechanical motion. Matching the expressions, (B5)
and (B6), for the diagonal forms of Ṽm provides the expres-
sions, (25), in the text.
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Leuchs, Opt. Phot. News 24, 38 (2013).
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